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Summary

An existing word in a language may acquire a new meaning as time passes, in addition to

meanings it already possesses. Such a new word-meaning pairing is called a semantic neolo-

gism. An example of a semantic neologism in English is ‘tweet’ referring to ‘a post on twitter’,

which is a newly acquired sense, in addition to its long established sense of referring to ‘a

bird song’. This thesis addresses the problem of the computational detection of such changes

from time-stamped raw text i.e., text without sense annotations. For this, a generative model

is proposed with variables for time Y , sense S, and contexts www around a given target word (a

potential semantic neologism). A target word will be treated as having is exhibiting K senses

over a given time period. The model has senses dependent on times, expressed by P(S|Y ), and

context words dependent on senses, expressed by P(www|S). This reflects first a reasoning that

sense ratios change over time. Secondly it reflects another reasoning that senses themselves,

each seen as a probability distribution over words, can be regarded as more or less eternal, and

subject to little change over time.

Two different estimation schemes Expectation Maximization (EM) [Dempster et al., 1977]

and Gibbs sampling [Gelfand and Smith, 1990] are proposed and the parameter updates are also

derived to get Maximum Likelihood and mean parameter estimates. For a genuine semantic

neologism the expectation is that the estimated P(S|Y ) values will for some S = k show an

initial phase of being close to zero which it then departs from.

To evaluate the estimated parameters, a ground truth date of emergence is required: call

this C0 – the time at which the neologistic sense for the word departed from close to zero and

continued to climb thereafter in a given corpus. It is hard to provide such C0 dates because of

the lack of diachronic sense-labeled corpora. In prior work there is a lack of consensus about,

or reflection on, the appropriate way to deal with this difficult ground-truth problem. One of

the contributions of the thesis is to reflect on the options, their strengths and weaknesses. The

Oxford English Dictionary (OED) maintains the earliest citation date of a word-sense pair –

call this Dc
0. This will be argued that this should not be taken to be C0 (though it sometimes has

been) but taken as a lower-bound for C0. To establish a more exact C0 a new so-called ‘tracks-

plot’ method will be proposed. The idea behind this ‘tracks-plot is that there may be words

particularly associated with novel sense and not with other senses. If the per-year probabilities

for such words, P(w|Y ), are plotted they are expected to be at close to 0 during an initial period

and take off at C0. For this work, Google 5-gram time-stamped corpus is used, which is based
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on Google’s digitized books holdings. Some arguments for choosing this this dataset over

possible alternative sources of time-stamped data are further established in this thesis.

Before conducting actual experiments on the datasets, the model was first tested using

a novel ‘pseudo-neologisms’ technique that was adopted from the ‘pseudo-word’ [Schütze,

1998] technique. Then a number of actual experiments were conducted on ‘positive’ targets –

that is targets known to exhibit sense emergence over some particular time period. Parameter

estimates were obtained from which it was mostly possible to identify a novel sense. Similarly

experiments were conducted on ‘negative’ targets – targets known not to exhibit sense emer-

gence. Mostly no novel sense was detected. There are a few semantic neologism targets for

which the model did not discover an expected novel sense. These are apparent failures of the

algorithm but some further analysis of the 5-gram data in these cases is at least suggestive of

the possibility that the anticipated senses are objectively absent from the 5-gram data.

Comparisons with related work along a number of orthogonal dimensions are made, includ-

ing model, datasets and evaluation approaches, though strictly quantitative comparison will not

be undertaken because of differences of datasets and evaluation approaches. The most closely

related work is that of Frermann and Lapata [2016], whose independently developed model

involves components P(S|Y ) and P(www|S,Y ), and so treats words as dependent on sense and

time, unlike the proposal developed here where words depend only on sense. The model used

in Frermann and Lapata [2016] will be argued to be conceptually a refinement of the model

proposed here (though it was not developed as such). Given the success of the model proposed

in the thesis in discovering the expected novel senses from the Google 5-gram data, it seems

the greater sophistication of the proposal in Frermann and Lapata [2016] relative to the simpler

model proposed here is not completely motivated.
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Chapter 1

Introduction

Languages have continuously evolved over time and such changes are called ‘diachronic’ in

nature. The different forms of language changes include change in word pronunciation, gram-

matical change, change in word spelling, syntactical change and lexical changes. There could

be many aspects such as social changes and technological advancements that influence such

changes. For most of this, the evidence comes from written time-stamped text inspected by

humans. In Natural language processing (NLP), there are a number of works that deal with

different aspects of these language changes, but there are not many works that deal with se-

mantic changes (a form of lexical change) in languages. In section 1.1, formal and semantic

neologisms – forms of lexical change that are of interest for this thesis are introduced. Also,

some other lexical changes are also discussed in section 1.2. Then in sections 1.3 and 1.4,

the research goal and motivation for this research is established. There could be a number of

factors that affects word and sense frequencies, only one of which is genuine language change.

Such factors are discussed in section 1.5. Then in section 1.6, there is a short discussion on

word sense granularity and the thesis-plan is provided in section 1.7.

1.1 Formal and Semantic Neologisms

There are two forms of lexical change that are of interest to understand the research problem.

They are,

1. When a new word is coined it is called a ‘formal neologism’. In this case a letter/-

phoneme sequence comes to be acceptable as a word where it was not before.

2. When an existing word acquires a novel sense, it is called a ‘semantic neologism’ [Tournier,

1985]. In this case the letter/phoneme sequence already exists, but takes a meaning it did

not have before.

Some examples of recent formal neologisms are; crowdsourcing: which refers to ‘getting

work done by a large community through a website’ introduced in the year 2006; selfie: which

refers to ‘a self-photograph taken using a smart-phone’ introduced in 2002; bromance: which

refers to ‘an intimate relationship between men’ introduced in the year 2001. These are first

1



2 CHAPTER 1. INTRODUCTION

citation dates from online Oxford English Dictionary (OED).

To consider some less recent examples, the words supermarket and genocide date from

the years 1931 and 1944 respectively, according to the OED. Their emergence can actually be

verified by using n-gram frequency data provided by Google. Figure 1.1 is based on the relative

frequency of these words in successive years; the raw relative frequencies for a particular word

are normalized by their mean over the times1. For the words supermarket and genocide, it can

be seen from the figure they have close to zero frequency until they emerged sometime around

1935 and 1940.

1850 1900 1950 2000
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8
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w
o

rd
 p

ro
b

s

Google ngram viewer

supermarket
genocide

Figure 1.1 – Word frequencies for the words supermarket, genocide that are formal neologisms

Turning to semantic neologism some recent examples are; tweet: which has an older sense

referring to bird noise and a newer sense referring to post a message on Twitter; bricked: which

has an older sense concerning construction with bricks and a newer sense which concerns

making some computing device unresponsive, probably by a software update. Some examples

of these usages are given below, where: (a) and (a′) correspond to old and new senses for tweet

and (b) and (b′) refer to the old and new senses for bricked. These examples and their year

indications are obtained by searching for these words using Google timeline search2.

(a)When a bird tweets, it’s telling you what it is and where it is. (1995)
(a′) An Embedded Tweet brings the best content created on Twitter into your article or
website. (2009)
(b) bricked up the windows of the old house (1990)
(b′) He managed to get his new iMac bricked while trying to boot WinXP on it. (2013)

Given a plain text time-stamped corpus it is easy to identify the date of emergence of a

formal neologism (ie., a newly coined term) just by using the frequency count of the word

itself (seen in the figure 1.1). It is not so straightforward to identify the emergence date of a

semantic neologism (ie., ‘new’ sense of an existing word).
1This plot is based on data downloaded via Google-Ngrams API https://github.com/econpy/

google-ngrams. This is further discussed in section 5.5. Fairly similar plots can be obtained online using
the Google n-gram viewer https://books.google.com/ngrams.

2Google provides a search feature which allows its users to search for words for a particular time-period. We
call this a Google timeline search

https://github.com/econpy/google-ngrams
https://github.com/econpy/google-ngrams
https://books.google.com/ngrams
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The above examples portray existing words tweet, bricked acquiring a novel sense. It is

important to note there are other forms of lexical changes such as pejoration, amelioration,

broadening and narrowing senses but this research is concerned only with semantic neologisms.

In the next section 1.2, there is a further discussion about these lexical changes to establish how

the sense emergence problem is different from these other language changes.

1.2 Other lexical changes

In addition to semantic neologisms, the other forms of language changes are discussed in this

section.

‘Pejoration’ refers to when a word’s sense becomes more negative over time, while ‘Ame-

lioration’ refers to a when word’s sense becomes more positive over time. As an example for

‘Pejoration’ consider the word awful which used to refer to something ‘worthy of respect’, but

recently it has taken a negative usage to mean ‘not worthy’ or ‘bad’. For ‘Amelioration’, con-

sider the word geek used to refer to ‘a fool’ early 20th century, while in the recent past it has

evolved to have a more positive sense meaning ‘a person who is extremely knowledgeable’.

Cook and Stevenson [2010] use corpora from different time periods to study the change in the

semantic orientation of words with respect to ‘Pejoration’ and ‘Amelioration’.

Broadening is a type of language change where the word meaning gets more inclusive than

its earlier meaning. An example of broadening of word sense, Guy Fawkes infamous first name

lost its specificity with the proliferation of November 5th effigies of the criminal; then guys

began to be used of males of strange appearance, then it was broadened to refer to any males,

and now it is generalized (especially in the plural) to any group of people, including groups of

females.

Narrowing is another type of language change where the word meaning gets less inclusive

than its earlier meaning. Following is an example to demonstrate the narrowing of word sense:

Ammunition originally referred to military supplies of all kinds, military supplies that explode,

such as bullets and rockets.

1.3 Research goal

Consider a semantic neologism word w and suppose it had K different senses over some

time period. Very compactly stated the research goal is to find how P(w|t) is divided up in

P(w in sense k|t) among different senses from K by unsupervised means.

Consider Fig 1.2 where the solid black-line is a hypothetical plot of P(w|t), showing how

a given word’s probability might vary over time – the kind of plot easily producible using the

Google n-gram viewer. If the word had K senses over its history, this plot is a superposition of

K word-sense plots and Fig 1.2 shows a hypothetical decomposition into two senses (the dashed

lines). In the hypothetical case shown, one of the senses emerged around 1970. Essentially the

aim of this research is to propose a method which can carry out the kind of decomposition
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1955 1970 20001985

C
0

Figure 1.2 – Word frequency (solid line) and sense frequencies (dashed lines).

illustrated in this picture. Once we have P(w in sense k|t), one can detect whether it is a neol-

ogistic sense. For a semantic neologism you expect the neologistic sense to have probabilities

close to 0 in the early years and then to go up in the later years. In the plot, the point at which

this happens is marked as C0.

For a formal neologism detecting its emergence is straightforward – it just requires the

time-series of P(w|t). For a semantic neologism you need the time-series P(w in sense k|t),
for each k, which is not visibly directly in the data. To deal with this, the intention is to use

an unsupervised model, that exploits our reasoning that the context words change when the

sense emerges (the actual model is given in section 3.2). In a way, by looking at the context

words the unsupervised model tries to imitate what an expert would do. This requires a dataset

containing occurrences of a target word T each of which has a time-stamp. This task is closely

related to word sense induction (WSI), but is different from WSI as it needs time-stamps.

1.4 Motivation

As lexical information is central to so many NLP tasks, means to automatically identify changes

to the required information could be useful. For a semantic neologism, the emergence date of

the neologism sense can be obtained based on the outcomes of the unsupervised algorithm. This

emergence date information would presumably render word-meaning representations more ac-

curate. Consider one of the language processing tasks, Statistical Machine Translation (SMT).

In such systems, this might be helpful in predicting the mistranslations of such words. If an

SMT system trained from aligned corpora from particular times is to be applied to text from

different times it could be of use to know whether there have been sense changes, perhaps

identifying which occurrences can be anticipated to be poorly translated. Table 1.1 provides

examples of mis-translation via Google translate that relate to this.

In table 1.1, the English original3, S1 comes from 1931, at which time gay simply meant

‘happy’. In recent times, it has acquired a frequently used ‘homosexual’ sense. G1 is the

German translation of S1 via Google translate (last executed on Apr 14, 2016), while T1 is

3This sentence comes from ‘sons and lovers’ by D.H. Lawrence
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aRX qBi? *H�`�- ?Qr2p2`- ?Bb #`Qr +H2�`2/- �M/ ?2 r�b LF^ �;�BM URNjRV

:RX JBi *H�`�- �#2` b2BM2 aiB`M ;2Hºb+?i- mM/ 2` r�` rB2/2` -TRTXJ]ZJQQ

hRX ye�d�d� o�e�¶� n��� ���¶ ny½�µ��¶� �½�¶ n�¸ �f²�¶
wã�¯j{¸ky�d�¸

GRX +H�`�- ��vBMmK- �p�`�i?m Tm`mp�K �F�i`�TT�/mK- K�i`mK �p�` K22M/mK
4WNSFHHJWPPFN^FQFW

�

akX _QQiBM; Kv �M/`QB/ T?QM2 r2Mi r2HH- #mi Aöp2 i`B2/ iQ ~�b? � +mbiQK _PJ
�M/ MQr A i?BMF Aöp2 GWNHPJI Kv T?QM2 UkyRRV

:kX _QQiBM; K2BM �M/`QB/@>�M/v Bbi ;mi ;2H�m72M- �#2` B+? ?�#2 p2`bm+?i-
2BM2 #2Mmix2`/2}MB2`i2 6H�b?@_PJ mM/ D2ixi /2MF2 B+?- /�bb B+? K2BM >�M/v
LJRFZJWY ?�#2

hkX s¾ n²±�d·� i�dk�j�{e�e¹ �¾�dy i{¾�� j�¸�e�¶� o�d¹
�d¾v���e��¾j�d¶ µ�dÖ ��½{e �½�¶ ¿µj�d��d¾s¾ i�dk�j�{e
GWNHPJI s¾� �d¾ �ek�yej�¾

GkX 2M �M/`QB/ iQH�BT2bBvBH M�M/`�;� b2M/`�i?m p�2`pB/mK- �M��H M��M Q`m
i�MBTT�v�M `QK2 TH�b? Kmv�`+?B K�``mK BTTQ/?m M��M 2M i?QH�BTT2bB GWNHPJI
2M/`m M��M MBM�BFFB`�2M

�

Table 1.1 – Sample English - German - Tamil translations via Google translate for sentences with
words gay and bricked; S1, S2 are the original English sentences; G1, G2 are the German transla-
tions for S1, S2; T1, T2 are the Tamil translations for S1, S2 and; L1, L2 are the Transliterations
for the Tamil text in T1, T2.

the Tamil translation of S1 and L1 is T1’s transliteration4 via Google translate. The word is

translated as Homosexuell and Orinaccerkkaiyalar in German and Tamil respectively, in the

‘homosexual’ sense. The translations have probably gone wrong because the training data is

recent and in it the ‘homosexual’ sense predominated. Following is another example translation

demonstrating the newer usage of word with older training data. The English original, S2,

comes from 2011, and uses the word bricked in its more recent ‘render-inert’ sense, but the

German translation uses gemauert in the older sense of ‘enclosing with bricks’, while the less

resourced language Tamil leaves the word bricked non-translated in T2 and L2. In this case the

translations have probably gone wrong for the opposite reason, namely that the training data is

not recent enough, and does not contain examples of the newer sense sufficiently often.

In addition to machine translation systems, the emergence date information may also be

helpful in updating dictionaries. When the word ‘stoned’ is searched on wordnet5, it produces

an entry for the ‘under drug influence’ sense, but when the word ‘brick’ is when searched on

4This transliteration is a representation of the pronunciation of the original Tamil text using English.
5The search outcome can be accessed from http://wordnetweb.princeton.edu/perl/webwn?s=

stoned&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=

http://wordnetweb.princeton.edu/perl/webwn?s=stoned&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
http://wordnetweb.princeton.edu/perl/webwn?s=stoned&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
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the online Wordnet6 database, it does not produce any entry relating to the ‘render inert’ sense

(a recent innovation). To deal with such dictionary incompletions, the diachronic analysis

to discover the novel sense may be useful. As further examples, consider the information

retrieval and question answering tasks, where the emergence date information could increase

the precision of query disambiguation and document retrieval.

1.5 What affects word frequencies?

Both formal and semantic neologisms are examples of language change which takes the form

of some kind of frequency change. It is worth noting that other things beside genuine language

change will lead to frequency changes, roughly speaking changes ‘in the world’ and changes

in people’s attitudes or pre-occupations. To demonstrate this, let us first consider unambiguous

words and phrases. Figure 1.3(a) shows frequencies7 of the 2-gram unreported rapes and the

word injustice. There is a dramatic change for unreported rapes and little change for injustice.

Based on our knowledge, this does not reflect a language change or changes ‘in the world’, but

more probably a change in people’s opinion towards unreported rape. To illustrate changes

‘in the world’, figure 1.3(b) shows the word frequency plots for the 2-grams America attacked,

British attacked, Germans attacked, Japan attacked. The first three 2-grams have an increase in

frequencies around 1910 and a decrease followed by another increase around 1935. The fourth

one has an increase just around 1935. Again this does not seem to reflect language changes

or just changes in people’s opinions but does reflect changes ‘in the world’ namely the world

wars 1914 - 1918 and 1939 - 1945.

(a) Changes in ‘opinion’
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(b) Changes in ‘World’
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Figure 1.3 – Word frequency plots to demonstrate how (a) People’s opinion affect word frequencies
(b) Changes in the world affect word frequencies.

6The word ‘brick’ search on wordnet online can be accessed from http://wordnetweb.princeton.
edu/perl/webwn?s=brick&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=
&o3=&o4=&h=

7This plot is based on data downloaded via Google-Ngrams API https://github.com/econpy/
google-ngrams. This is further discussed in section 5.5.

http://wordnetweb.princeton.edu/perl/webwn?s=brick&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
http://wordnetweb.princeton.edu/perl/webwn?s=brick&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
http://wordnetweb.princeton.edu/perl/webwn?s=brick&sub=Search+WordNet&o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=
https://github.com/econpy/google-ngrams
https://github.com/econpy/google-ngrams
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Whilst the above looked at unambiguous words, presumably also for ambiguous words

the frequency of use of a particular sense is not only a reflection of language change but also

world change and opinion change. It’s an interesting question as to whether these different

influences can be distinguished automatically, but it is a question far beyond the scope of this

research to do this. For the case of semantic neologisms, we will assume that an initial period

of frequency close to zero and then a climbing frequency is a reasonably reliable indicator of

language change.

1.6 Granularity of senses

Traditionally people distinguish polysemy from homonymy[Véronis, 2002]. When two or

more words either sound the same (homophones), have the same spelling (homographs), or

both, but have unrelated meanings, they are called homonyms. An example is the word bank

which refers to ‘a financial institution’ and ‘a river shore’. A word is polysemous if it can be

used to express different meanings that are semantically related (may be obvious or subtle). An

example for this is again the word bank referred in two different senses ‘a financial institution’

and ‘as a place of safekeeping or storage’ (as in a computer’s memory bank).

It is not the case that we will be seeking to distinguish between homonymy and polysemy.

One reason is that the distinction is not always straightforward. Relatedly it is notoriously dif-

ficult to say how many distinct senses a word has. Later on when experiments are performed

on an ambiguous word, there will be a flexibility about the number of senses it might have.

In particular no reference will be made to any particular dictionary to decide this. This prag-

matic approach to homonymy, polysemy and number of senses seems to be a fairly widespread

assumption made in this area of work.

1.7 Thesis plan

In this chapter, the research goal and motivation for this research was established. In the next

chapter 2, first the problem evolution from static word sense induction to novel sense detection

is introduced and then prior work related to this research is discussed. The alternative models

and also alternative approaches to evaluation in such prior works are discussed. Some of the

main points of contrast between this prior work and the approaches to be taken in the current

work are noted and motivated.

In chapter 3 the theoretical proposal is set forth. As preliminaries to that there is a brief

discussion on the (unsupervised) parameter estimation approaches Maximum Likelihood Esti-

mation (MLE), Maximum A Posteriori (MAP) and Mean estimates for the unknown parameters

in any given model. An outline to Expectation Maximization (EM) and Gibbs sampling tech-

niques involved in estimating the parameters are presented. Then, a probabilistic model – call

this a ‘diachronic’ model – is proposed in section 3.2 which conditions words in a target’s con-

text on that target’s sense and conditions senses on times, making a simplifying assumption that
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context words are independent of time given the target’s sense. For the said model, the EM and

Gibbs sampling algorithms are presented in further sections that will be used for experiments

later. The relationships of this model to the model recently proposed in Frermann and Lapata

[2016] are also noted in section 3.5.

This being an unsupervised task and no standard annotated datasets available, it is chal-

lenging to evaluate a sense emergence (neologistic sense) when it is identified by the model.

From the literature review in chapter 2 this issue emerges as one where there is little consensus

or reflection on the possibilities. Chapter 4 is concerned specifically with the issue of establish-

ing the ground truth for sense emergence claims. Besides identifying strengths and weakness

of approaches that have been previously attempted a proposed so-called ’tracks-based’ method

is put forward. In the experimental work the data-set used represents an extended sequence

of year-by-year data, which is in contrast to much of the prior work. This presents some new

issues in the identification of a sense emergence date from a time series and this is also ad-

dressed in section 4.1.4. Further, the possibilities to analyze parameter outcomes to verify the

identified neologistic sense are also provided.

For this novel sense detection task, we require time-stamped raw text from a long time-

span. The dataset possibilities for this task are analyzed in chapter 5, where informed decisions

are also made in choosing the appropriate corpus for this work. There is also some discussion

of the steps taken to arrive at a set of target items for the later experiments.

Chapter 6 reports and analyses all the experiments conducted on the Google 5-gram dataset.

In chapter 6, a pseudo-neologisms technique is introduced (adapted from pseudo-word tech-

nique introduced by Schütze [1998]) to test the model’s ability in identifying a neologistic

sense. Following the success of the diachronic model in identifying a neologistic sense, a real

set of experiments using EM and Gibbs sampling are conducted that include positive (semantic

neologism) and negative (non-semantic neologism) targets. The said experiments are evaluated

based on the evaluation possibilities introduced in chapter 4. There were also some semantic

neologism targets such that the experiments on them did not produce an expected neologistic

sense. An analysis on such targets are also reported and discussed in chapter 6.

Finally, chapter 7 presents the main concluding points of the thesis and discusses areas for

future work.
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Chapter 2

Literature review

Languages change with time and lexical changes form an important part of that. In section

1.1, two forms of lexical changes were introduced, namely formal and semantic neologisms.

Further in section 1.2 examples for how other lexical changes influence language were also

provided. Then in section 1.3, the aim of this research in identifying the neologism sense for

a semantic neologism word was established with a hypothetical plot of an ambiguous word

decomposed into individual senses, one of which emerged at a particular time. The motivation

(section 1.4) for this work was further established with real world examples that are affected

by semantic neologisms.

Section 2.1 of this chapter introduces the evolution of research problem followed by a

detailed discussion on the models and algorithms used in the prior work in section 2.2. Further

in section 2.3, various evaluation schemes used in the prior work are discussed. Having said

these, it is necessary to emphasize that in this chapter all the relevant works are discussed and

the relevant comparisons of the current work with respect to the prior work are postponed to

chapter 6, after we introduce our model and data, and experiments are published.

2.1 Problem evolution

With the research goal introduced in section 2.1, one may rightly perceive that the current

work is related to word sense disambiguation (WSD) and word sense induction (WSI) tasks

otherwise called as word sense discrimination tasks.

Word sense disambiguation (WSD) [Agirre and Edmonds, 2007, Ide and Véronis, 1998] is

a classical natural language processing (NLP) task to determine the sense of a given ambiguous

word from its context (phrase, sentence, paragraph, text). WSD can be considered as a classifi-

cation problem – for a target word T (an ambiguous word that is polysemous or homonym1) in

a sentence be disambiguated, WSD system requires an inventory of different sense usages and

1Words in sentences are associated to a particular sense where they appear. These words are ambiguous in
nature because of the multiple meanings associated with them.

11
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with this T can be assigned a sense usage. The target T is disambiguated based on its context2,

which determines the usage of T in a given sentence.

Word sense discrimination (or) induction (WSI) [Schütze, 1998] is closely related to WSD,

but is different from WSD as this is independent of any annotated datasets or a word-sense

inventory. Initially WSD was applied to the English language due to a vast amount of resources

available for the language, but it was not possible to extend this to less-resourced languages,

which led to the usage of WSI. Instead of relying on a dictionary of words or a sense annotated

corpora, WSI deals with sense discrimination of T from a large data collection with T , by

unsupervised means ie., WSI concerns automatic identification of senses of a given word. WSI

is challenging as there is no dictionary of word senses available nor there is any supervision

available (in terms of sense annotations) to discriminate data items with T .

As introduction in section 1.3, one may perceive that the proposed research is closely re-

lated to WSI as the neologism sense detection task is unsupervised. But this is different from

WSI as we also consider the time of origin (publishing date) of the occurrence of T while dis-

criminating the word’s sense in an attempt to determine when a sense of T first comes into use

in a time series

2.2 Models and algorithms in the prior work

For novel sense detection tasks there seem to be two widely used approaches in the literature,

one involving generative models and the other distance based clustering, and these are dis-

cussed in this section. Some further approaches are then also discussed in section 2.2.3. In

discussing these alternative approaches in this section, we mostly describe the concepts and

algorithms involved. Some of the further details (such as data-sets used) will be taken up in

later sections. For this work, each document d from a dataset DDD is considered to be a window

of words W d (contexts) around the target word T .

2.2.1 Approaches using probabilistic generative models

Topic models are probabilistic models used to automatically discover topics such as medical

science, computer, statistics, government and tax from a collection of documents by unsuper-

vised means. An LDA topic model (Blei et al. [2003], Griffiths and Steyvers [2004]) can be

seen as a generative model of word sequences www. In the context where these models were first

developed, these sequences are the text content of documents. Where there are W d words in a

document d the model has W d hidden so called topic variables {s1, . . . ,sW d}. In its generative

story, the values of these variables are first chosen, in each case choosing amongst K values,

and then each word wd
i is generated depending on sd

i . The plate diagram for a topic model is

given in figure 2.1.

2According to Firth [1957] – a famous phrase “a word is characterized by the company it keeps”, one can
understand the role of words associated with the ambiguous word, also called as context words.
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θ

sdi wd
i
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W d

D

K

γπ : hyperparam of dirichlet distribution to sample for π
γθ : hyperparam of dirichlet distribution to sample for θ
πd : parameter for topics (topic probs in d)
sdi : topic for wd

i

wd
i : word i in document d

W d : words in document d
D : number of documents
K : total number of topics (classes)
θk : parameter for words (word probs in topic k)

w1:D : set of all documents
V : all words in the vocabulary

Figure 2.1 – Plate diagram for Topic model (Latent Dirichlet Allocation)

As the plate diagram indicates, there is a per-topic word distribution θθθ 1:K , thought of as

drawn from a Dirichlet prior3. For each document d there is a topic distribution πππd
1:K , again

thought of as drawn from a Dirichlet prior. Blei et al. [2003] uses variational EM for parameter

estimation, and many papers since have used various Gibbs sampling methods.

This model has been adopted for WSI starting with Brody and Lapata [2009] and Yao

and Durme [2011] more or less by treating ‘topics’ as senses. In the place of conventional

documents, they have tiny ‘documents’ consisting of the context words www with a given target

word T . Rather than 50 or more ‘topics’, K is instead in the region of around 10. Finally in

order to have the model give a single sense to a target T the following final step is adopted.

After estimation is complete, from each d the most-likely ‘topic’ sequence {s1, . . . ,sW d} is

inferred. Then the ‘sense’ for item d is the value of k that occurs most frequently in this final

topic sequence i.e., sense = argmax(k) [freq(k in s1, . . . ,sW d )]. So this approach equates the

sense of target T with the most frequent topics in its context.

Whilst Brody and Lapata [2009] and Yao and Durme [2011] used topic models for WSI

without any concern for change over time, the relevance to this thesis is that several people have

used such topic models in connection with sense emergence. Rohrdantz et al. [2011] seems to

be the earliest attempt of this kind, and uses the most basic LDA topic model ie., the one in

plate diagram 2.1. This has been followed by Cook et al. [2013, 2014], Lau et al. [2012]. They

use the Hierarchical Dirichlet Process (HDP) (Teh et al. [2004]) variant of LDA, which was

first applied to WSI in Yao and Durme [2011]. Without attempting to describe HDP’s details it

has the feature that the number of topics can be inferred.

It may seem paradoxical that these kinds of models which make no mention of time could

be applied to the problem of sense emergence. The way this is done is that first in the parameter

estimation phase all time information in the data is ignored i.e., all data is pooled. Then second

only after parameter estimation is completed, there is a phase of assigning a sense label to each

data item. Finally one can look to see if the assigned senses are related to times, in particular

that some particular sense is only getting assigned to later data items. This explains a general

approach to applying topic-modeling to sense emergence, one that has been followed by Cook

et al. [2013, 2014], Lau et al. [2012], Rohrdantz et al. [2011].

In the arena of topic modeling in documents, people have also sought to address the issue

3Background on Dirichlet prior’s is given in chapter 3
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that a ‘topic’ might have an interesting history. In work of that kind, Hall et al. [2008] point out

the possibility of using exactly the same strategy of time-unaware topic-modeling that Cook

et al. [2013, 2014], Lau et al. [2012] use: for training ignore time, and afterwards look at

distributions of assigned labels in particular time-blocks. Hall et al. [2008] also point out the

alternative, that of involving time in the modeling. In the setting of studying documents such

approaches seem to be generally referred to as ‘Dynamic Topic Models’. Wijaya and Yeniterzi

[2011] is an example of work which seeks to exploit an existing dynamic topic model [Wang

and McCallum, 2006] for the sense emergence task. Perhaps surprisingly this seems to be

the only such piece of work, though in principle any dynamic topic model could be exploited.

The dynamic topic model used by [Wang and McCallum, 2006] is called ‘Topics over time’

(TOT) [Wang and McCallum, 2006], a variant of LDA with a time parameter in the model to

determine Topics over a certain time period. Somewhat differently to the other approaches they

collapse all the contexts for a target T which share a time into single ‘document’ for that time.

They did not really propose a sense emergence algorithm, but rather make some observations.

For example in a 2-topic model they find a plausible increase of one particular sense of ‘gay’

at a particular time.

In the approach put forward in this thesis (section 3.2), time is involved in the modeling,

with senses seen as having time-dependent probabilities. There is a recent article from Fr-

ermann and Lapata [2016], also concerning a model with time-dependent sense probabilities.

It uses a model which is not a dynamic topic model as such but which takes a lot of inspi-

ration from a proposal in that area Mimno et al. [2008]. Given a target word, their model

has parameters4 πππ t for P(S|Y ) and θθθ t,k for P(www|S,Y ) chosen from some discrete distribution,

where πππ t is the sense parameter that can capture senses that change over time. This model is

in some ways like the one proposed in this thesis, and very briefly stated the contrast is that

the model which is put forward in section 3.2 has πππ t for P(S|Y ) and θθθ k for P(www|S), so words

are treated as conditionally independent of time given a sense. These models were developed

independently, with the model described in section 3.2 actually proposed earlier (see Emms

and Jayapal [2014], Emms and Jayapal [2015] ) than that in Frermann and Lapata [2016] ie.

strictly speaking it is not prior work. The model used in Frermann and Lapata [2016] is con-

ceptually a refinement of the model proposed here (though it was not developed as such). For

that reason we will postpone making a clear exposition of the model’s details to section 3.5,

after the presentation of this thesis’ model in section 3.2. It will be much clearer to see at that

point the conceptual relationships between the two. The choices made concerning testing and

evaluation in Frermann and Lapata [2016] are largely independent of the technicalities of their

model proposal, and they will be turned to sooner in section 2.3.

4They have used different notations for the parameters, but are adapted here for the convenience of comparisons
that will be made with the current work.
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2.2.2 Approaches using clustering

Another possible approach involves distance-based clustering. This has been used in the work

of [Mitra et al., 2014, 2015]. They divide the data into different eras and on each era they run a

particular clustering algorithm. The outcome of this for each era is a set of clusters where each

cluster is a set of words similar to a Wordnet ‘synset’ (Figure 2.2).

Figure 2.2 – This is a screenshot from table 1 of Mitra et al. [2015]’s paper, showing clusters for
the target ‘compiler’

They use two different dependency parsed data sources (i) Google syntactic n-grams be-

tween 1520 and 2008 [Goldberg and Orwant, 2013] (ii) random tweets from twitter between

2012 and 2013 and construct a so called ‘Distributional Thesaurus’(DT) – follows a method

as provided in [Rychlý and Kilgarriff, 2007], from the word co-occurrence graph5 based on

syntactic bi-gram distribution across all times t and for each target T to track its sense change.

Although they have considered a longer time span, they divide the time-line into time-groups

containing equal amounts of data. To construct such a DT, a feature selection is done for each

word using a so called ‘Lexicographer Mutual Information’ (LMI) [Kilgarriff et al., 2004] met-

ric and the top 1000 features are retained. The clustering is done from these feature sets for

each time-group by first constructing a neighborhood graph and the graph is clustered using

the ‘Chinese Whispers’ algorithm (as provided in [Biemann et al., 2013]).

They then have to relate the sense-representing clusters from different eras to each other.

One aspect of this is a criteria they propose which identifies a cluster as a ‘sense birth’. Consider

sense clusters sN1
1 , . . . ,sN1

n from an earlier era N1 and sN2
1 , . . . ,sN2

n from a later era N2. When a

sense cluster sN2
i appearing in N2 has sufficiently few of its member words belonging to any of

the clusters for the earlier era N1, they count as sN2
i as sense birth. Figure 2.3 shows a screenshot

of the schematic shown in figure 2 of Mitra et al. [2015] explaining the birth of a new sense,

where Sn provided with a green circle to show a new cluster that was did not exist in an earlier

time.

Referring to figure 2.2, by their criteria the cluster C22 is a sense birth for the target com-

piler. This approach does not attempt to annotate the target’s occurrences with a sense label,

5In a word co-occurrence graph, words are denoted by nodes, and there exists an edge between two nodes, if the
corresponding words co-occur in a sentence.
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Figure 2.3 – This is a sreenshot of the the schematic shown in figure 2 of Mitra et al. [2015]
depicting the birth of a new sense.

and it does not seem easy to make it do so.

This is a point of contrast to the current thesis proposal and the approaches based on topic

modeling, which both being generative models, inevitably do have this instance-labeling fea-

ture, which is arguably a desirable one.

2.2.3 Other approaches

Kulkarni et al. [2014]’s work primarily concerns the detection of broadening and narrowing of

word senses, however they are also concerned with sense emergence. To model the temporal

evolution of language, they construct a time series per T using three different methods to define

a time-dependent statistic for the target. One method simply uses the frequency of the target

word T . In a second method, the time-specific statistic is the distance between the target word’s

part of speech (POS) distributions in successive time periods. In the third method, they make

time-specific vectors – call this vvvt – based on the time-specific co-occurring words. Then in

this case the time-specific statistic they use6 is Tt = 1− cosine(vvvt ,vvv0), that is a comparison to

the vector for the first time point.

Without getting into all the details of their work, their vectors vvvt are not just the raw co-

occurrence statistics, but are derived using the ‘word-embeddings’ [Mikolov et al., 2013] tech-

nique. Figure 2.4 shows a screen-shot of the time-series via this third method for the word tape.

They suggest the pattern in this plot reflects the introduction of magnetic tape in the 1950’s and

its prevalence by the 1970’s.

The most striking difference to the other techniques already discussed is that those had

some form of sense representations, whilst none of the alternatives in Kulkarni et al. [2014]

seek to make any kind of sense representations. In some sense it is concerned with what

is detectable once senses have been aggregated over. Correspondingly the techniques used

arguably are not unsupervised machine learning techniques.

Kim et al. [2014] is another approach using almost identical techniques.

Tang et al. [2015] has an aim to detect sense emergence as well as other kinds of semantic

change. Their work is applied to the Chinese language. Where www is the context words around

6An alternative would again be to make a time series of difference between consecutive vectors.
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Figure 2.4 – This is a screen-shot of the plot for the word tape provided in figure 5 from Kulkarni
et al. [2014]’a paper

a particular occurrence of a target T , they adopt the unusual starting position of identifying

the ‘sense’ of this occurrence with that word w ∈ www which maximizes a particular ‘association

score’ assoc(T,w). Without going into the details of this score, this means there are as many

potential ‘senses’ for the target T as there are words in the vocabulary V . Arguably this con-

flates a feature selection technique with a sense labeling technique. Also noticeably this sense

concept does not involve any unsupervised machine learning.

Figure 2.5 – This is a screen-shot of the plot for the word tou ming provided in figure 6 from Tang
et al. [2015]’s paper

They define what they call a ‘aggregative’ approach and a ‘segregative’ approach. In the

aggregative approach, they compute the entropy of the sense distribution in a given time and

plot this in a time-series, analogous to Kulkarni et al. [2014]. Figure 2.5 shows the time-series

of this kind for the word tou ming. The time series plot is rather jagged and a further part of

their proposal involves fitting a smoother line to it.

Figure 2.6 – This is a screen-shot of the plot for a sense of the word tou ming provided in figure 7
from Tang et al. [2015]’a paper

In the segregative approach, they are interested in the time-line of individual senses. Before

doing this they attempt to merge the “senses” as defined above. They use a particular clustering
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algorithm for this, though not an entirely unsupervised one as it refers to a Chinese dictionary

of synonyms. Even after the clustering they can still have as many as 490 senses of a single

target. Figure 2.6 shows the time-series plot for a sense obtained in this way for the word tou

ming. Again part of their proposal is to fit a smoother line to it.

They seek to use parameters of their fitted lines to make observations about sense dynamics.

Its hard to assess the success of this on their Chinese examples. However, it seems fair to say

that their approach like Kulkarni et al. [2014]’s approach does not seem to be intrinsically able

to label instances of the target with senses.

2.3 Evaluation in the prior work

In this section, the evaluation approaches used in the relevant prior work are discussed: the

different algorithmic approaches used in prior work were already discussed in the previous

section 2.2.

Recall [Rohrdantz et al., 2011] used an LDA model for their work on novel sense detection.

They seem to have considered 7 topics to find the sense emergence from a range of years

considered for their work. For all their topics, their occurrence over time is visualized over time

(years) as a form of density plot. This way they predict a novel sense when a particular topic

has dense areas identified in the later years and not during the initial period. Their approach

to assessing the correctness of the prediction is using a ‘dictionary first inclusion’ approach so

they compare the date of an apparent sense emergent with a date based on when that sense was

first included in a dictionary. In particular they referred to multiple dictionaries from different

periods (Longman Dictionary from 1987, the English WordNet4 [Fellbaum, 1998] and 2007

Collins dictionary) to verify the emerging sense information of the identified novel sense. There

is a detailed discussion about this kind of approach to ground truth in section 4.1.2.

[Cook et al., 2013, 2014, Lau et al., 2012] also had an approach based on topic modeling

(section 2.2). For their work, they did not consider a long time span but rather considered two

datasets, a focus corpus fc and a reference corpus rc, from later and earlier times respectively.

The BNC [Burnard, 2007] corpus that has data representing late 20th century has been used

as rc and the ukWac [Ferraresi et al., 2008] from 2008 as fc. [Cook et al., 2013, 2014, Lau

et al., 2012] have chosen their neologism targets by comparing successive editions of Concise

Oxford English dictionary (1995, 2008). So they too are adopting the ‘dictionary first inclusion’

approach to ground truth. They evaluated success in the following way. They have both known

neologisms and known non-neologisms and for each target they define a novelty score where

they compute a ratio of the inferred sense frequencies p2 : p1 belonging to rc : fc times. The

evaluation then takes the form of seeing to what extent neologism targets rank higher than

non-neologisms by this score.

Recall that Mitra et al. [2014, 2015] adopted a clustering approach to identify novel sense

– when a cluster sN2
k is generated for a particular time period N2 and is counted as not the

same as any cluster sN1
k′ from an earlier time period N1, they count this a sense ‘birth’. They
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divide the available data into 8 eras of equal data size and ever diminishing time-span: 1520-

1908, 1909-1953, 1954-1972, 1973-1986, 1987-1995, 1996-2001, 2002-2005, 2006-2008. So

‘sense birth’, as they term it, can be assessed relative to any pair of eras drawn from this set. For

evaluation purposes they considered the inferred ‘sense births between the eras N1 = 1909-1953

and N2 = 2002-2005.

In [Mitra et al., 2014] to verify an inferred sense-birth they adopted the very simplest of all

ground truth approaches: reference to the intuitions of one of the authors. In the later version

of the paper Mitra et al. [2015] they indicate a switch to a ‘dictionary first citation’ approach

to ground truth, so the date of the earliest citation for the sense in a dictionary (This general

approach to ground truth be discussed further in section 4.1.2). Rather than using the OED

they get their dating information from the ‘Online Etymology Dictionary’ http://www.

etymonline.com, an online source created by Douglas Harper. They themselves describe

the source as the online dictionary.reference.com but this itself is a secondary source

that pulls information from other sources and the dating information in fact comes from the

above-mentioned http://www.etymonline.com. Surprisingly the reported verification

of sense emergences in the two papers, one due to author intuition and one due to use of

dictionary first citations, are identical.

In addition to the dictionary based evaluation conducted, they propose an evaluation of

the dating using WordNet. To do this they first define a mapping (based on amount of shared

words) from any of their clusters to a Wordnet sense-id. Then they check whether when a

sense cluster sN2
k at N2 has sufficiently little overlap with the clusters at N1 – ie. that it is a

’sense birth’ in their terms – that it is also the case that the mapped image of sN2
k is also distinct

from all the mapped images of the clusters at N1. If this is so they count this as verifying

that the sN2
k sense truly only emerged in the later time period N2. It is not actually clear it

is reasonable to argue that this tells you something about the correct dates. It seems to beg

the question that the algorithm was definitely correct to not have found a cluster in the earlier

N1 data that is sufficiently similar to the cluster sN2
k found in the later N2 data. Suppose one

took a word definitely known to not have acquired a new sense between times N1 and N2, and

suppose the system generates a N2 cluster sN2
k sufficiently different to all N1 clusters. If the

mapped WordNet image of sN2
k is different to the mapped images for the all the N1 clusters you

would be forced to conclude the system is correct to predict a new sense for the word at N2.

So this approach at least arguably is not giving an evaluation of dating information but rather it

seems to verify to some extent that discovered sense distinctions are real in the sense of being

correlated with different WordNet ids.

In Frermann and Lapata [2016] one of the the model outcomes is a vector, πππ t of sense prob-

abilities given times, P(S|Y ). A possibility is to inspect this for evidence of sense emergence.

In Fig 4 of their paper, for 4 target words there is a display of this parameter. The picture below

reproduces this for their target power

http://www.etymonline.com
http://www.etymonline.com
dictionary.reference.com
http://www.etymonline.com
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About the 8 senses they say

three senses emerge: the institutional power (colors gray/1, brown/2, pink/5, or-

ange/7 in the figure),mental power (yellow/3, lightgreen/4, darkgreen/8), and power

as supply of energy (violet/6)

They go on to suggest that the observed pattern for sense 6 (violet) is indicative of a “sense

birth”, and use a dictionary first citation date of 1889 from the OED to corroborate this. This

indicates that they see one possibility for evaluating the outcomes is to look at the trajectory

of the per-year sense probabilities and check for correlations with some kind of ground-truth

about sense-emergence, such as first-citation date in the OED. However, they do not pursue

this possibility very much. Possibly this is due to the fact the focus is not exclusively, or even

primarily, on sense emergence, but also on sense change – the idea that a sense is constantly

there but is itself changing.

Another of their evaluation approaches attempts to mimic the WordNet-based approach

of Mitra et al. [2014, 2015] outlined above. In place of comparing the sense-representing

clusters at T1 and T2 for ‘birth’ candidates they develop a novelty score for a sense k at T2.

This, curiously, is not based on the contrast of the probability of the sense at T1 and T2, but is

instead based on (i) the word distribution for the sense at T2 and (ii) a set of top-1000 words

W most distinguishing of T2 vs T1, defined essentially by the ratio of their frequencies in the

data from these times. Their novelty score for a sense is ∑w∈W P(w|S = k, t = T2), and for a

word is the maximum over the sense-based scores. They then also have a mapping from the

word-distributions associated with a sense k to WordNet ids. Following an analogous logic to

Mitra et al. [2014, 2015], for words with a high novelty score at T2 they then check whether for

the responsible sense k at T2 that it is also the case that the mapped image of k (at T2) is also

distinct from the mapped images of all the other senses k′ (at T1). Again it is not clear that this

straightforwardly verifies the dating of a possible sense emergence rather than confirming that

the systems sense distinctions can correlate with WordNet distinctions. In the end they observe

that they obtain a success rate ’in the same ballpark’ as Mitra et al. [2014, 2015], attaching

to it the caveat that scores are not directly comparable due to differences in training corpora,

focus and reference times, and candidate words. This fair caveat will be a recurring them in

comparisons between different pieces of research on this topic.

Briefly noting their other approaches to evaluation, in a further experiment they refer to a

list of 100 words which were rated by human annotators in Gulordava and Baroni [2011] for
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their degree of semantic change between the 1960s and 1990s: they see if the above-noted

novelty scoring of words yields a ranking which correlates with human ratings for change.

Note the annotation concerns change, and not sense-emergence per-se. They mention also one

further ‘evaluation’ which used their model in a particular way to participate in the Diachronic

Text Evaluation7 (DTE) task conducted by SemEval 2015. However, this task consists of

determining the period when a text was written, so does not measure success in identifying

sense emergences.

2.4 Discussion

Possibly because of the relative novelty of the area of applying machine learning to sense

emergence, the research works reviewed in the preceding sections do not use the same data-

sets, test items, notions of ground truth or performance criteria. Nor do they propose models

or algorithms which are consciously put forward as evolutions of each other. This makes a

traditional critique in terms of quantitative performance and/or relations amongst the models

or algorithms difficult. Nonetheless there are some main points to be made about how the work

to be proposed here relates to this prior work.

A noteworthy characteristic in almost all of the work just reviewed in the preceding sections

is that they apply some form of sense induction (call this SI) algorithm which is time-unaware.

One design option is to pool all training data for the SI phase, then assign the likeliest senses to

examples, and then to finally check for a correlation with time. In this design option, the sense

assignments are static in nature as the SI algorithm is time-unaware. The system discussed in

Lau et al. [2012] and Cook et al. [2013, 2014] used precisely this option. Another split-then-

relate design option is to separate the data into eras, perform independent SI on each subset

and then seek to consider how the sense representations from each era may (or may not) be

identified with each other. Mitra et al. [2014, 2015] used precisely this option. These two

pieces of work represent just one way to instantiate these two strategies for exploiting a time-

unaware SI system, and one simple research direction in sense emergence systems could be

simply to plug other time-unaware SI systems into these pool or split-then-relate approaches.

This is not the direction that will be followed here. Instead we will be introducing a time-

aware probabilistic model, a crucial feature of which will be that it has parameters which

represent the probability of a sense at a time, P(S|Y ). The aim will be to evaluate by considering

the estimated values of this parameter. Such an approach has not been much explored. The

principal related piece of work is [Frermann and Lapata, 2016]. As noted in section 2.2 this

work is best seen as a possible logical development of the model discussed here, even if it was

not developed in this way. As such we have left the discussion of this model to section 3.5,

after the presentation of this thesis’ model in section 3.2, so that a meaningful comparison can

be made.

Ground-truth and evaluation is difficult for a sense emergence system. The review of the

7http://alt.qcri.org/semeval2015/task7/

http://alt.qcri.org/semeval2015/task7/
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prior work in the preceding sections seems to indicate a lack of consensus about the best or

proper way to go about this. For this reason chapter 4 constitutes a dedicated discussion of this

topic, something which arguably has not been done before. It reviews all possible approaches

to ground-truth, noting their strengths and weaknesses. Additionally in section 4.1.3 we also

propose an additional so-called ‘tracks’ method, on the basis of which to establish a ground-

truth about sense emergence in a particular corpus.

The ‘pseudo-word’ technique was introduced by Schütze [1998] as a way to test word-sense

discrimination model without requiring large scale annotation. As an additional contribution

in the area of evaluating sense emergence systems a development of this will be proposed in

section 6.2 to give a diachronic version which will be called ‘pseudo-neologisms’. It could be

applied to any sense emergence system, and will be applied to the system proposed here.

In the experiments that are conducted the data-set used represents an extended sequence of

year-by-year data. This contrasts to the approach of Cook et al. [2013, 2014], Lau et al. [2012],

which has two eras of data, and to the approach of Mitra et al. [2014, 2015], who have 8 eras of

ever diminishing size. This presents some new issues in the identification of a sense emergence

date in a time series. These will be addressed in section 4.1.4.



Chapter 3

Research theory

In the previous chapter 2, we discussed the various models and evaluation schemes used in the

prior work. We try to address the shortcomings from the prior works in our current work. Be-

fore we actually introduce our probabilistic model, we provide a brief discussion on the differ-

ent ‘parameter estimation essentials’ (section 3.1) such as ‘Parameter estimation approaches’,

‘Dirichlet priors’ followed by an outline to ‘Expectation Maximization’ (EM) and ‘Gibbs sam-

pling’ procedures involved in estimating model parameters. The actual model, a so-called

‘diachronic model’ is introduced in section 3.2 that can discover neologism sense from a given

dataset. For the introduced diachronic model, the parameter updates are derived for EM and

Gibbs sampling procedures in sections 3.3 and 3.4; and algorithms using these updates are also

provided. In section 3.5 there is a detailed discussion of the model of Frermann and Lapata

[2016], identifying its points of overlap and contrast with the model presented here.

3.1 Parameter estimation essentials

In this section various parameter estimation approaches are discussed in brief. Further there is

discussion on the Dirichlet distribution, which is often used as a parameter prior. Additionally,

there is a brief discussion providing the outline of Expectation Maximization (EM) and Gibbs

sampling parameter estimation schemes.

3.1.1 Parameter estimation approaches

Consider a dataset DDD = {d1,d2, . . . ,dn} with n data items, where each di is defined by some

set of variables and there is a model P(DDD;Θ) where Θ is some parameter setting of the model

(eg. probabilities of various settings of various variables). There are a variety of approaches

to estimate the parameter values [Heinrich, 2004]. It is a natural idea to seek to find values for

Θ that maximizes the likelihood P(DDD;Θ). This is the so called Maximum Likelihood Estimate

(MLE)

23
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ΘMLE = argmax
Θ

P(DDD;Θ) (3.1)

The Bayesian approach to parameter estimation assumes the parameters are a further kind

of unknown having their own distribution, its prior P(Θ;γΘ), where γΘ is some hyper-parameter

setting for Θ. There is then the joint probability P(DDD;Θ)×P(Θ;γΘ) and via this a posterior on

Θ given the data P(Θ|DDD), given by

P(Θ|DDD;γΘ) =
P(DDD|Θ)×P(Θ;γΘ)

P(DDD;γΘ)
(3.2)

Another natural estimate is the mode of this posterior P(Θ|DDD;γΘ). The denominator P(DDD;γγγθ )

given by
∫

Θ
{P(DDD|Θ)P(Θ;γΘ)} is a normalizing constant. So the mode is also just the maxi-

mizer of the numerator. The so-called Maximum A Posteriori (MAP) estimate is defined by

ΘMAP:

ΘMAP = argmax
Θ

P(Θ|DDD;γΘ) = argmax
Θ

P(DDD;Θ)×P(Θ;γΘ) (3.3)

In other words a MAP estimate is equivalent to maximizing the product of likelihood and

prior. In the case of uniform prior, the MAP estimate works out to be a Maximum Likelihood

estimate.

Given the existence of the posterior P(Θ|DDD;γΘ) it also natural to consider its mean, as

another point estimate1:

mean(Θ) =
∫

Θ

P(Θ|DDD;γΘ)×Θ (3.4)

All three types of estimates (equations 3.1, 3.3, 3.4) have some motivation. A practical

question however is whether in any given case are there ways to determine their values. In

certain simple cases there are closed form formulae for these but in most cases of interest

there are not. Instead there are various algorithms which compute approximations of them,

principally Expectation Maximization (section 3.1.3) for MLE and MAP estimates and Gibbs

sampling (section 3.1.4) for mean estimates. These parameters can be computed by iterative

re-estimation procedures.

Where does prior come from? The prior is a non-negligible part of Bayesian inference, while

it is at user’s discretion to chose a type of prior. A prior distribution is supposed to represent

knowledge about the distribution of parameters prior to the experiment outcomes. But how to

choose a prior for the experiment? When there is no or little knowledge about the distribution

of parameters prior to the experiment outcomes, one can choose a non-informative prior, where

the prior distribution is uniform. As noted above, this makes MAP estimate equivalent to a ML

estimate.

1One may also want to consider representations of the spread about the mean.
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There are certain prior distributions in use, expressible by a parameterized formula. One of

these is Dirichlet which seems to allow a variety of intuitions to be expressed and has desirable

computational properties – some of those are described in the following section 3.1.2.

3.1.2 Dirichlet priors

The Dirichlet distribution can be considered as the multi-variate generalization of the beta

distribution. The density function of beta distribution is defined in (equation 3.5), where x is

the random variable and α,β are the parameters.

f (x;α,β ) =
1

B(α,β )
xα−1(1− x)β−1 (3.5)

where B(α,β ) = Γ(α)Γ(β )
Γ(α+β ) is a beta function.

We can see the Dirichlet distribution as a distribution over distributions. Let us consider a

K dimensional vector of probabilities xxx = [x1,x2, . . . ,xK ] where ∑
K
k=1 xk = 1. The distribution

is parameterized by ααα , where ααα = [α1,α2, . . . ,αK ]. The density function of a Dirichlet is given

by

f (x1,x2...xK ;α1,α2...αK) =
1

β (ααα)

K

∏
k=1

xαk−1
k (3.6)

where,

(i) β (ααα) = ∏
K
k=1 Γ(αk)

Γ(∑K
k=1 αk)

, (ii) ∑
K
k=1 xk = 1 and 0 < xk < 1, (iii) Γ(n) denotes the gamma function,

and (iv) ααα is a vector of parameters and each value in the vector is greater than 0. One of the

definitions of the gamma function is that for real numbers x > 0, Γ(x) =
∫

∞

0 yx−1e−ydy, from

which follows a recurrence property that Γ(x) = (x−1)Γ(x−1) and Γ(1) = 1 that will be used

below2.

It is important to note that the ‘normalizing’ constant β (ααα) appearing in the definition of

the Dirichlet is the integral of the main product term ie.

β (ααα) =
∫

xxx

k

∏
i=1

xαi−1
i (3.7)

Following is a discussion of some of the properites of of the Dirichlet distribution, including

its mean and mode.

3.1.2.1 Mean

Before the expectation or mean of the Dirichlet distribution is formulated, the expectation

for the beta distribution is derived as the Dirichlet distribution is considered the multi-variate

2When applied to integers the recurrence property entails that the gamma functoin can be expressed in terms of
the factorial function ie., Γ(n) = (n−1)!
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generalization of beta distribution3.

If X has a beta distribution the expectation of X is given by

E [X ] =
∫ 1

0

xα−1(1− x)β−1

B(α,β )
x.dx

where B(α,β ) is a beta function given by B(α,β ) = Γ(α)Γ(β )
Γ(α+β ) .

E [X ] =
1

B(α,β )

∫ 1

0
xα(1− x)β−1dx

=
1

B(α,β )

∫ 1

0
x(α−1)+1(1− x)β−1dx

=
1

B(α,β )
B(α +1,β ) (by integral representation of beta function)4

=
Γ(α +β )

Γ(α)Γ(β )

Γ(α +1)Γ(β )
Γ(α +β +1)

(from definition of beta function)

=
Γ(α +β )

Γ(α +β +1)
Γ(α +1)

Γ(α)
(re-arranging from previous step)

=
Γ(α +β )

Γ(α +β )(α +β )

Γ(α)(α)

Γ(α)
(gamma’s property Γ(z) = Γ(z−1)(z−1))

E [X ] =
α

α +β

Expectation for Dirichlet: The Dirichlet is a distribution over K dimensional vectors. The

(the j-th component) of the expectation or mean of the distribution is given as,

E [x j] =
ααα jjj

∑k αk
(3.8)

This derivation is similar to the one used to derive the expectation of the beta distribution, and

3The proof closely follows the proof from http://www.statlect.com/beta_distribution.htm
– last executed on Jun 10, 2016.

4The integral representation of beta function is provided at http://www.statlect.com/subon2/
betfun1.htm – last executed on Jun 10, 2016.

http://www.statlect.com/beta_distribution.htm
http://www.statlect.com/subon2/betfun1.htm
http://www.statlect.com/subon2/betfun1.htm
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is given below for x1.

E [x1] =
∫

xxx

1
β (ααα)

K

∏
k=1

xαk−1
k x1.dxxx

=
1

β (ααα)

∫
xxx

K

∏
k=2

xαk−1
k x(α1+1)−1

1 .dxxx

consider ααα ′′′k 6=1 = αααkkk and ααα ′′′111 = ααα +1

E [x1] =
1

β (ααα)

∫
xxx

β (ααα ′′′)

β (ααα ′′′)

K

∏
k=1

xα ′k−1
k .dxxx

=
β (ααα ′′′)

β (ααα)
(1)

=
∏

K
k=2 Γ(αk)Γ(α1 +1)

Γ(∑k αk +1)
Γ(∑k αk)

∏k Γ(αk)

using gamma’s property Γ(z) = (z−1)Γ(z−1) a few times we arrive at

E [x1] =
α1

∑k αk

As nothing crucially depended on choosing x1 in this, we obtain in general the mean of the

Dirichlet distribution

E [x j] =
α j

∑k αk

3.1.2.2 Mode

The mode is the value of the distribution where the density is the highest. Its formula for the

Dirichlet is (assuming all αk > 1):

xk =
αk−1

∑k(αk−1)
, (3.9)

Here, the mode for the beta distribution is first derived and then extended to the Dirichlet

distribution as the Dirichlet distribution is the generalization of the beta distribution.

To find maxima or minima of the beta distribution, we get the derivative of the density

function (equation 3.5) with respect to x, set it to zero and solve for x.

∂

∂x
f (x;α,β ) =

∂

∂x
1

B(α,β )
xα−1(1− x)β−1 = 0
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Considering the beta function 1
B(α,β ) as a constant C,

∂

∂x
f (x;α,β ) =C

(
(α−1)xα−2(1− x)β−1 + xα−1(−1)(β −1)(1− x)β−2

)
= 0

⇒ (α−1)xα−1x−1(1− x)β−1− xα−1(β −1)(1− x)β−1(1− x)−1 = 0

⇒ xα−1(1− x)β−1
[

α−1
x
− β −1

(1− x)

]
= 0

⇒ xα−1(1− x)β−1
[
(1− x)(α−1)− (β −1)x

x(1− x)

]
= 0

⇒ (1− x)(α−1)− (β −1)x = 0

Now, solving for x, we get

x =
α−1

α +β −2

For example, for α = β , this gives a solution at x = 1
2 , and if α > 1,β > 1, this is a

maximum, that is the mode of beta distribution5.

Analogous derivations can be carried out for Dirichlet distribution. The beta distribution

has the two parameters α and β . Analogous derivations can be made for the Dirichlet with its

K ≥ 2 parameters in ααα , leading to an analogous expression for a stationary point:

xxxk =
αααk−1

∑k(αk−1)

As with the beta distribution, if all components of ααα are equal and greater than 1, the above

is a maximum, that is, the mode of the distribution6.

3.1.2.3 Dirichlet as conjugate prior

By now we know that the Dirichlet distribution is a generalization of the beta distribution. As

beta distribution is used as prior for the binomial distribution, it is a good idea to use Dirich-

let distribution as prior for multi-nomial distribution. Following is the formulation to prove

multi-nomial and Dirichlet distributions form conjugate prior7. The multinomial distribution is

5If α < 1,β < 1 this is minimum.
6If all are equal and less than 1, it is a minimum. Some of the possibilities are illustrated in Figure 3.2
7A conjugate prior of a likelihood function is the prior when both posterior and prior distributions are of the

same distribution



3.1. PARAMETER ESTIMATION ESSENTIALS 29

defined by,

multi[x;θ ] =
(∑K

k=1 xk)!

∏
k
k=1(xk!)

K

∏
k=1

θ
xk
k (3.10)

where the parameters θ are the probability values to get into one of the K-categories. Now, the

posterior probability function is defined to be:

p(θ |x) = p(x;θ)p(θ)
p(x)

(3.11)

But, as p(x) will act as a normalizing constant, this can be excluded and the posterior proba-

bility distribution is rewritten to be

p(θ |x) = p(x;θ)p(θ)

= multi[x;θ ] Dir(θ |x)

≈
K

∏
k=1

θ
xk
k

K

∏
k=1

θ
αk−1
k

≈
K

∏
k=1

θ
(xk+αk−1)
k

p(θ |x) = Dir(x+α)

This section followed the report by Huang [2005]. There are the formulae for the mode and

mean (sections 3.1.2.2 and 3.1.2.1) of the posterior Dirichlet’s. So in the case of data in the

form of counts amongst K alternatives then the mode and mean of the posterior on θθθ (discussed

in section 3.1) assuming a Dirichlet prior for γγγθ can be just calculated exactly. This kind of

neat arrangement disappears once hidden variables are introduced in the model.

3.1.2.4 Impact of Dirichlet prior

Now, consider a collection of documents with each document consisting of a few words and

the total vocabulary size is 10. One could assign probability of the words appearing in each

document through random draws from a Dirichlet distribution.

A short demonstration of Dirichlet distribution for the said document collection is dis-

cussed here with plots. It is difficult to visualize plots that are greater than 2 or 3 dimensional.

Therefore, two dimensional and three dimensional plots are provided to depict the behavior of

Dirichlet distribution. Figure 3.1 provides 15 random draws at each of four different α settings

and the α’s are considered symmetric for these plots. The graph has the words plotted on x-axis

and the probability of the words on the y-axis. From the plots, the following can be observed

(i) as the alpha goes below 1, the graph gets uneven and sparse (ii) for each draw, the same

distribution is maintained but the proportion of words are not always same for each draw. This
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property will be utilized while modeling ‘Diachronic model’ with prior, discussed in section

3.2.

Figure 3.2 provides three-dimensional plots of Dirichlet distribution with α’s at different

settings. The α settings will be called as hyper-parameters in the later sections, The plots

provided in this figure will help in understanding the Gibbs sampling algorithm (section 3.1.4)

for a diachronic model (introduced later in section 3.2) better.
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Figure 3.1 – 2D plots of Dirichlet distribution, (from left to right), α at different settings: 1. α = 1,
2. α = 0.1, 3. α = 5, 4. α = 0.01. The figure provides 15 random draws at each of four different
α settings. The graph has the number of topics plotted on x-axis and the probability of the topic on
the y-axis.
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Figure 3.2 – 3D plots of Dirichlet distribution. Each of these plots are produced at dimension
k = 3 and the respective alpha settings are titled for each plot. It can observed that when α = 1
(symmetric), the distribution is uniform, while α = 10 (symmetric), the distribution has a mode at
the maximum and the hump is dense. But when we have α’s set asymmetric, the distributions are
skewed.
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3.1.3 Expectation Maximization outline

Expectation Maximization (EM) introduced by Dempster et al. [1977] is a point estimation

technique with iterative procedure used to find the maximum likelihood estimate (MLE) [Fisher,

1959, Sprott, 2000] of some parameters belonging to a parameter distribution Θ from incom-

plete data. In MLE, the idea is to estimate the model parameter(s) for which the observed data

will have the maximum likelihood.

Consider a large dataset DDD = {d1,d2, . . . ,dn} of size n. For each di in DDD is defined by set-

tings of unobserved variable S that takes one of K values and some observed variables xxx. Given

a joint probability model P(S,xxx;Θ) with Θ providing a representation for all the parameters,

EM makes sequence of estimates Θ0 → Θ1 → . . .→ Θn. The unknown or hidden variable S

enters the likelihood via the sum ∑s P(S,xxx;Θ). Taking the product of this across all data items

leads to a problem which cannot just be solved by calculus arriving at a closed form solution.

The EM algorithm seeks to find the MLE by iteratively applying the following two steps:

(E-step) For each training instance di in DDD consider all its possible comple-

tions with setting S, (S = k,xxxd), computing for each its conditional proba-

bility P(S = k|xxxd ;Θn) under the current estimates Θn. Let γd(k) represent

this conditional probability.

(M-step) Treating γd(k) as if they were genuine counts, apply Maximum

Likelihood Estimation to the virtual corpus of completions to derive new

estimates for Θn+1.
The EM procedure derives useful estimates in the sense that it increases data likelihood

over iterations. It theoretically guarantees that as EM iterates through, the (n+ 1)th estimate

will never be less likely than the nth estimate ie., ∏i(∑s P(S,xxx;Θn))<= ∏i(∑s P(S,xxx;Θn+1)).

3.1.4 Gibbs sampling outline

Gibbs sampling [Bishop, 2006, Gelfand and Smith, 1990, Resnik and Hardisty, 2010] is a

Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of observations which

are approximated from a specified multivariate probability distribution (i.e. from the joint

probability distribution of two or more random variables), when direct sampling is difficult.

The idea behind using this algorithm is to get the desired posterior distribution after iterating

through a number of sampling steps from the conditional distribution.

Consider a probability distribution P(ZZZ) = P(z1,z2, . . . ,zn), from which sampling can be

done. Gibbs sampling is used to generate a sequence of samples from such a probability distri-

bution. The Gibbs sampling procedure can work with some initial state. So we initialize state

values for the variables z1,z2, . . . ,zn. Each step of the Gibbs sampling would involve replacing

value for one variable zi with a value sampled from a distribution of the variable conditioned

on the remaining variables from the distribution ie., P(zi|zzz−i). This way, one Gibbs sample is

obtained after sampling for all the variables in the distribution P(ZZZ). This procedure is defined

in the following pseudo-code.
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Gibbs sampling
1. Initialize {zi : i = 1, . . . ,n}
2. for τ = 1, . . . ,T :

− Sample zτ+1
1 ∼ P(z1|z(τ)2 ,z(τ)3 , . . . ,z(τ)n )

− Sample zτ+1
2 ∼ P(z2|z(τ+1)

1 ,z(τ)3 , . . . ,z(τ)n )
...

− Sample zτ+1
M ∼ P(zM|z(τ+1)

1 ,z(τ+1)
2 , . . . ,z(τ+1)

n−1 )

This procedure is repeated a number of times until the samples begin to converge to what

would be sampled from the true distribution. Although the number of sampling steps required

to get a desired (stationary) distribution is not known, it is theoretically proved that Gibbs sam-

pling method will reach the desired distribution after a sufficiently large number of sampling

steps.

As introduced in section 3.1.1, Bayesian analysis have hyper-parameters for the prior. Con-

tinuing with the model introduced in section 3.1.3, suppose we have a model of joint probability

with the hyper-parameters for all data, is P(SSS1:D,xxx1:D,Θ;γΘ), where Θ is the model parame-

ters and γΘ is hyper-parameter of the prior distribution of these parameters. Given this, there

must exist a posterior P(SSS1:D,Θ|xxx1:D;γΘ). In this, SSS1:D and Θ play the role of z1,z2, . . . ,zn

seeking to make samples of SSS1:D and Θ from sampling formulas of these conditional probabil-

ities: P(Sd |SSS−d ,Θ,xxx1:D;γΘ) and P(Θ j|SSS1:D,Θ− j,xxx1:D;γΘ). This way, a number of samples for

each member of Θ are generated and the mean of these samples are considered. With enough

samples, this procedure provides an accurate estimate of this mean.

3.2 Proposed Diachronic model

For this work, consider a large dataset8 D containing a number of data items. Each data item9

d for a target T includes a time-stamp Y . Consider the text snippets for the targets bricked and

smashed it in table 3.1 for two different targets from different times. This will be used for a

discussion on the models.

Now, to get a model the data is formulated to be: For the target T = bricked, let www be a

sequence of context words 10 – whose first l elements are the l words to the left of T and whose

last r elements are the r words to the right of T . The time Y is the year in which the particular

data item was authored. Consider S to range over K senses that T can take, but the target T in

each d is assumed to have just one sense from K choices. Here, S is a hidden variable and the

data will provide values only for Y and www.

Based on the said formulations, and considering that the target entities bricked and smashed

it can take two different senses, the data representation is provided below for the texts provided

in the table 3.1 considering r = l = 5. In this case when the number of context words available

8 can also be referred to as a collection of documents or a corpus.
9 also referred to as a document

10 The words to the left and right of the target T provide the context to the model
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Senses Text Year

Sense 1 . . . In 1611 she was bricked into one of the rooms . . . 2001

Sense 2 I’ve tried to flash a custom ROM and now I think 2011
I’ve bricked my phone

Sense 1 the wind lifted his three-car garage and smashed it to 1995
the ground.

Sense 2 sensational group CEO, totally smashed it in the BGT 2013

Table 3.1 – Example sentences with the target entities

to the left or right in the text snippet is less than 5, the vector has been padded with L to the left

and R to the right11.

Y = 2001,S = 1,www = {L, In, 1611, she, was, into, one, of, the, rooms}

Y = 2011,S = 2,www = {and, now, I, think, I’ve, my, phone, R, R, R}

Y = 1995,S = 1,www = {lifted, his, three-car, garage, and, to, the, ground., R, R}

Y = 2013,S = 2,www = {L, sensational, group, CEO,, totally, in, the, BGT, R, R}

Thus each data item can be considered to represented by the three variables Y , S and www.

The joint probability distribution of Y,S and www without loss of generality is given by,

p(Y,S,www) = P(Y )×P(S|Y )× p(www|S,Y ) (3.12)

P(Y ) intuitively reflects the relative abundance of data items with year Y within the entire

corpus. P(S|Y ) directly expresses the idea that the sense varies with time (years). The final

term expresses a dependency of context words on S and Y . Some independence assumptions

are now made.

First assumption is that the context words www are conditionally independent of time Y given

sense S, so p(www|S,Y ) is reduced to P(www|S). This assumption reflects a reasoning that when-

ever a particular concept is being invoked by a word, the expected accompanying vocabulary

is rather stable. In illustration, for the unambiguous word pray Figure 3.3 shows its corpus

frequency12 between 1840 to 2000, along with the conditional probabilities for certain neigh-

boring words, with each trajectory of probabilities normalized by its mean. Its clear that while

pray’s probability has changed substantially (fallen 4-fold), the conditional context probabili-

11This padding aspect is not particularly central but has simplifying consequence that all vectors have the same
length. It is perfectly possible to not do this padding, and have vectors of varying length; the programs developed
later allow for this option.

12This plot is based on data downloaded via Google-Ngrams API https://github.com/econpy/
google-ngrams. This is discussed further in section 5.5.

https://github.com/econpy/google-ngrams
https://github.com/econpy/google-ngrams
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ties have changed far less. The viability of this assumption is really only for the experiments to

reveal. The assumption certainly simplifies the learning problem, removing the need to learn a

word probability distribution for every sense k and time t combination.

The second independence assumption is that the context words www given sense S are inde-

pendent of each other; this assumption further reduces the third factor to ∏i p(wi|S). The model

is rewritten to be,

p(Y,S,www) = P(Y )×P(S|Y )×P(www|S)

= P(Y )×P(S|Y )×∏
i

p(wi|S) (3.13)

Parameter notations: To fix a notation for model’s parameters (i) for every time t let πππ t

be a length K vector of sense probabilities (ii) for every sense k, let θθθ k be a length V vector of

context word probabilities for target sense k, where V is the size of the vocabulary encountered

in all the data – and (iii) let τττ be a vector of time probabilities of length N, where N is the

number of different time stamps. These parameters are effectively 2-D tables or 1-D sequences.

The model equation with the parameters for one data item is given by:

P(Y,S,www;τττ1:N ,πππ1:N ,θθθ 1:K) = P(Y ;τττ1:N)×P(S|Y ;πππ1:N)×∏
i

p(wi|S;θθθ 1:K) (3.14)

The entire data corpus is essentially a sequence of triples

〈Y,S,www〉1 . . .〈Y,S,www〉d . . .〈Y,S,www〉D
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It will be convenient to use ttt1:D,sss1:D and www1:D to refer to all the D values of Y , S and WWW , respec-

tively in the D items, and to use P(ttt1:D,sss1:D,www1:D) in place of P(〈Y,S,www〉1 . . .〈Y,S,www〉d . . .〈Y,S,www〉D)
for the probability of the entire corpus13. An expression for this probability, including the pa-

rameters is:

P(ttt1:D,sss1:D,www1:D;τττ1:N ,πππ1:N ,θθθ 1:K) =∏
d

[
P(td ;τττ1:N)P(sd |td ;πππ1:N)∏

i
P(wd

i |sd ;θθθ 1:K)

]
(3.15)

θ

π

sd wd
itd

τ

W d

D

K

N

πt : parameter for senses (sense probs at t)

sd : sense label for document d
wd

i : word i in document d

W d : words in document d
D : number of documents
K : total number of senses (classes)
θk : parameter for words (word probs at sense k)

w1:D : set of all documents
τ : a vector of all time periods
τt : probability for a particular time t
V : all words in the vocabulary
N : number of unique time instances

Figure 3.4 – Plate diagram - No prior

Figure 3.4 shows a plate diagram for the model in equation 3.15, which does not have any

prior assumption over the model parameters. In the plate diagram, only the word vectors www

and times (years) t are observed variables and are shown in shaded circles. Everything else

is not observed and is represented as non-shaded circles. A number is drawn on the plate to

represent the number of repetitions. For example, D in the corner of the plate indicates that

the variables inside the plate are repeated D times, once for each document in the corpus. The

directed edges between variables indicate dependencies between the variables. Consider the

directed edge between t and τττ . This indicates that every document’s time td is dependent on

the vector of probabilities τττ for all years, which is indicated in the first product of equation

3.15. Each document’s sense sd depends on the time td and sense parameter πππ td , similarly each

word wd
i in the document depends on the current document’s sense assignment sd and word

parameters θθθ sd – these are represented in the second and third products of the equation, which

are depicted in the plate diagram using directed edges.

If the values for the parameters in equation 3.15 will be inferred from the data without any

prior assumptions about the parameters, the parameter estimate woud be the Maximum Likeli-

hood Estimate (MLE). As described in the preceding sectins, however, for Bayesian analysis,

13This will be particular convenient in developing the formulae in the later discussion of Gibbs sampling
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a prior distribution over the parameters would be assumed.

For such a Bayesian formulation, let the πππ t sense probability vectors have a K-dimensional

Dirichlet prior with parameter γπ and let the θθθ k word probability vectors have a V -dimensional

Dirichlet prior with parameter γθ . So giving the model equation with the hyper-parameters for

the document collection 14 included we have:

P(ttt1:D,sss1:D,www1:D,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ ,τττ) = ∏
t

Dirich(πππ t ;γγγπ)×∏
k

Dirich(θθθ k;γγγθ )×

∏
d

[
P(td ;τττ1:N)P(sd |td ;πππ1:N)∏

i
P(wd

i |sd ;θθθ 1:K)

]
(3.16)

Figure 3.5, provides a plate diagram of the model in equation 3.16 – with prior over the

θ

π

sd

γπ

wd
i

γθ

td

τ

W d

D

K

N

γπ : hyperparam of dirichlet distribution to sample for π
γθ : hyperparam of dirichlet distribution to sample for θ
πt : parameter for senses (sense probs at t)

sd : sense label for document d
wd

i : word i in document d

W d : words in document d
D : number of documents
K : total number of senses (classes)
θk : parameter for words (word probs at sense k)

w1:D : set of all documents
τ : probability for all time periods
τt : probability for a particular time t
V : all words in the vocabulary
N : number of unique time instances

Figure 3.5 – Plate diagram - with prior over parameters

parameters15. The model parameters are multinomial in nature, so the prior distribution of

the parameters is chosen from Dirichlet distribution as Dirichlet is the conjugate prior16 of

Multi-nomial distribution. The benefit of choosing the same family of distributions is that the

posterior distribution is easy to compute. Recall the choice of Dirichlet as prior was discussed

in section 3.1.2.3. The only difference in equation 3.16 from 3.15, is that the model’s param-

eters have got a prior distribution – this is also shown in the plate diagram 3.5 with directed

edges from hyper-parameters γπ and γθ connected to π and θ respectively.

Equation 3.16 represents the proposed diachronic model, which is dynamic in sense of

having the sense probabilities vary with the time. The following section brief discusses a static

alternative.
14Hyper-parameter is the parameter of prior distribution; this term is used just to distinguish itself from the model

parameters
15The priors γπ and γθ are the hyper-parameters that allows to choose a prior distribution over the sense parameter

πππ and θθθ respectively.
16When a posterior distribution and prior distribution is in the same family of distributions, they are considered

to be conjugate distributions
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3.2.1 Static model alternative

The static model can be further derived from the diachronic model by considering a further sim-

plifying assumption on equation 3.13. The second factor P(S|Y ) in equation 3.13 can be further

reduced to p(S) by considering that sense is independent of time. Now, the joint probability

can be expressed as:

p(Y,S,www) = p(Y )× p(S)× p(www|S) (3.17)

A static model presented in 3.17 can also be used in place of the diachronic model, but the

model is just not dynamic as the inference procedure would involve getting the sense assign-

ments for all the data items in the dataset and then work out the sense probabilities for each

year separately. The static model can be compared to a simple Naive Bayes model assuming

that the years are equally probable. Such a model can be applied by first training avoiding all

time-stamps in the data, then second assigning most probable sense-labels to data items – still

ignoring time-stamps, and then third by examining whether the assigned labels show any par-

ticular tendencies to be assigned more often in particular times. Further systems which work

in this fashion are discussed in section 2.2.

3.2.2 Alternative choices

The context considered for the diachronic model is a bag-of-words, which closely resembles

an uni-gram language model. However there are many possibilities that can be considered to

be the context. One such possibility is a bi-gram model, where the context-words would be

words dependent on previous word ie., wi|wi−1. For such a case, the model can be re-written

to be,

P(Y,S,www;τττ,πππ,θθθ) = P(Y ;τττ1:N)×P(S|Y ;πππ1:N)×∏
i

P(wi−1,wi|S;θθθ) (3.18)

where wi−1,wi term in the last factor is the context representing the current word and its

previous word together. This form would increase the number of word parameters two-fold.

Similarly one could extend the model to n-grams, which would further complicate the inference

process. Evidently a bag of words is a simple model, but the idea is if one can infer the

neologism sense using such a simple model, there is no need for such complicated model in

3.18.

Also there are other possibilities discussed in the prior art (section 2.2) which are not simple

compared to the diachronic model. But the most scientific thing to do is to first consider the

simplest model and go for complicated models only when the former fails.
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3.3 EM estimation for Diachronic model

For the proposed diachronic model discussed in 3.2, two different parameter estimation schemes

will be developed. This section develops a Expectation Maximization that derives a point ML

estimate. Section 3.4 will develop an alternative Gibbs sampling approach.

The idea behind EM algorithm, as discussed in section 3.1.3, is to repeatedly calculate

the expected completions of the incomplete data, and derive new parameters by maximum

likelihood estimation of the expected completions (E-step and M-step). The model for a single

data item provided in 3.14 to get an ML estimate of parameters considering t,s,w are the values

of Y,S and W respectively, can be rewritten as:

P(d;τττ1:N ,πππ,θθθ) = P(td ;τττ1:N)×P(sd |td ;πππ1:N)×∏
i

P(wd
i |sd ;θθθ 1:K) (3.19)

This can be expressed compactly using the parameter notations as

P(d;Θ) = τt ×πt,k×
W d

∏
i=1

θk,wd
i

(3.20)

where τt is the probability of time t in the corpus, πt,k is the probability of sense k at time t

and θk,wd
i

is the probability of word w at ith position in the document d with sense k and use

Θ for all the model’s parameters. All the notations are also summarized in the plate diagram

available from figure 3.4.

Now the idea is to find the parameter setting Θ that maximizes the probability of the ob-

served data -– a corpus of time-stamped occurrences for the given target T ie., argmaxΘ ∏d P(d;Θ).

The EM steps are:

(E-step) For each training instance (Y d ,wwwd) from the dataset DDD consider

all its possible completions with a setting of S, (Y d ,S = k,wwwd), computing

for each its conditional probability P(S = k|Y = t,wwwd) under the current

estimate Θn(τt ,πππ t ,θθθ k). Let γd(k) represent this conditional probability.

(M-step) treating the γd(k) as if they were genuine counts of the alternative

completions, apply maximum likelihood estimation to the virtual corpus

of completions to derive new estimates Θn+1(τt ,πππ t ,θθθ k). This amounts to

solving

argmax
Θ

∏
d

[
∏

k
P(Y d ,S = k,wwwd ;Θ)γd(k)

]
or in log terms

argmax
Θ

∑
d

[
∑
k

γ
d(k)× log(P(Y d ,S = k,wwwd ;Θ)

]

On each iteration of the E-step, the conditional probabilities P(S = k|Y = td ,www = wwwd) are
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computed for all the training instances in D where k ∈ {1 . . . ,K}. Let γ be a table of size

sizeO f (DDD)× sizeO f (k), where DDD is the number of data items in the corpus and k is the number

of senses. The value for each table entry γ[d][k] is provided by,

γ[d][k] =
P(Y = td ,S = k,www = wwwd)

∑S=k′ P(Y = td ,S = k′,www = wwwd)

=
τt ×πt,k×∏

W d

i=1 θk,wd
i

∑S=k′ τt ×πt,k′×∏
W d

i=1 θk′,wd
i

(terms not dependent on k′ are moved out)

=
τt ×πt,k×∏

W d

i=1 θk,wd
i

τt × [∑S=k′i πt,k′×∏
W d

i=1 θk′,wd
i
]

(EM update after cancelling out common terms)

γ[d][k] =
πt,k×∏

W d

i=1 θk,wd
i

∑S=k′ πt,k′×∏
W d

i=1 θk′,wd
i

(3.21)

Once table γ is filled, the M-step has to find the Θ which maximizes the probability of the

virtual data corpus where each completion has a virtual frequency of γd(k):

argmax
Θ

∑
d

[
∑
k

γ
d(k)× log P(Y d ,S = k,wwwd ;Θ)

]
The solution to this can be derived use calculus, in conjunction with a so-called Lagrange

multipliers – the derivations for the updates are worked out in section 3.3.1. The solutions

work out to be as follows:

For each year t, πππ t , the parameter defining P(S = k|Y = t;πππ t) is (for each sense k),

πππ t,k =
∑d(if Y d = t then γ[d][k] else 0)

∑d(if Y d = t then 1 else 0)
(3.22)

For each sense k, θθθ k, the parameter defining P(w|S = k;θθθ k) is (for each word w)

θθθ k,w =
∑d(γ[d][k]× f req(w ∈ wwwd))

∑d(length(wwwd))
(3.23)

For each year t, τt , the parameter defining P(td ;τt) is given by,

τt =
∑d(if td = t then 1)

∑d(1)
(3.24)

Though this is included as an update for completeness, the settings for parameter τ will not
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vary through iterations.

The above updates can be re-expressed further. If St,k is sum of the pseudo-counts of sense

k for documents with time-stamp t. (ie. ∑d(if Y d = t then γ[d][k] else 0), we can also write:

πππ t,k =
St,k

∑k′ St,k′
(3.25)

Also if Vk,v is sum of the pseudo-counts of word v in sense k cases (ie. ∑d [γ
d(k)× f req(w ∈

wwwd)]), we can also write

θθθ k,w =
Vk,w

∑w′(Vk,w′)
(3.26)

The procedure is summarized in algorithm 1.

as in text, assume data as
context words www1:D, time-stamps ttt1:D

assume K is a supplied no of senses
create γ[D][K] // data sense probs
create S[T ][K] // see text
create V[K][V ] // see text
for itr:=1 to no-iterations do

set S[t][k] = V[k][v] = 0 for all t,k,v
// E-step starts here

for d:=1 to D do
for k:=1 to K do

compute λd [k] as in equation 3.21
end
for k:=1 to K do
S[td ][k] += λd [k] // incr count

end
for i:=1 to len(wwwd) do
V[k][wd

i ] += λd [k] // incr count
end

end
// M-step starts here

for t:=1 to N do
compute πππ t according to Eqn 3.22

end
for k:=1 to K do

compute θθθ k according to Eqn 3.23
end

end

Algorithm 1: EM estimation

3.3.1 Deriving EM updates

Let Θm be some setting of all parameters of the model and let d be a data item with unspecified

S variable. The following function Qd(Θ,Θm) is formulated to be,



3.3. EM ESTIMATION FOR DIACHRONIC MODEL 41

Qd(Θ,Θm) = E
S|Y d WWW d ;Θm

[
log P(S,Y d ,WWW d ;Θ)

]
(3.27)

= ∑
S

[
P(S|Y d ,WWW d ;Θ

m)log P(S,Y d ,WWW d ;Θ)
]

(3.28)

which for the data item d, gives an expectation of the log probabilities of its completions at pa-

rameter setting Θ, with the expectations taken with respect to P(S|Y d ,WWW d ;Θm), the conditional

probability at parameter setting Θm of the completion given what is known.

This can be summed over all d, and it can be shown that the updates given in (3.22) (3.23)

and (3.24) make Θm+1 that value of Θ which, amongst all possible values satisfying the con-

straints on Θ, is the maximizing value of ∑d Qd(Θ,Θm), that is

Θ
m+1 = argmax

Θ

∑
d

Qd(Θ,Θm) (3.29)

= argmax
Θ

∑
d

[
E

S|Y d WWW d ;Θm

[
log(P(S Y d WWW d ;Θ))

]]
(3.30)

= argmax
Θ

∑
d

∑
S

[
P(S|Y d WWW d ;Θ

m)log(P(S Y d WWW d ;Θ))
]

(3.31)

The components of Θ are all effectively 2-D or 1-D tables, defining probability distribu-

tions. To formulate the appropriate Lagrangian it is useful to have names for each position

in these tables and sequences. For this formulation, the following notations πk|y for πππy,k, θw|k

for θθθ k,w and τy for every τy will be used. In considering the space all possibly parameter set-

tings, there are the constraints that for each y, ∑k πk|y = 1, that for each k, ∑w θw|k = 1 and that

∑y τy = 1.

To solve the constrained maximization problem (3.31) the Lagrangian is formulated to be

L= ∑
d

Qd(Θ,Θm)+∑
y

λS|y(∑
k

πk|y−1)+∑
k

λW |k(∑
w

θw|k−1)+λY (∑
y

τy−1)

where we have Lagrange multipliers λS|y for each y, λW |k for each s, and also on further multi-

plier, λY . Besides these, L is over the variables πk|y (one for each k,y), θw|k (one for each w,k)

and τy (one for each y). The values of the πk|y, θw|k and τy variables that are stationary points

of L are stationary points of ∑d Qd(Θ,Θm) that satisfy the constraints. To find the stationary

points of L, we must find all partial derivatives of L and set to 0.

Using the earlier defined notation γd
m for P(S|Y d WWW d ;Θm), the multiplicative definition of

the model and that these turn into additions under taking logs, Qd(Θ,Θm) can be expressed

Qd(Θ,Θm) = ∑
k

γ
d
m

[
log(πk|y)+( ∑

w∈V
#(w,WWW d)log(θw|k))+ log(τy)

]
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For each πk|y, collecting the relevant terms of L we have (∑d:Y d=y γd
m(k)

[
log(πk|y)

]
)+λS|yπk|y,

so for the partial derivative:

∂L
∂πk|y

=

[
∑

d:Y d=y

γ
d
m(k)[

1
πk|y

]

]
+λS|y = 0 =⇒ πk|y =

∑d:Y d=y γd
m(k)

−λS|y
(3.32)

Setting ∂L
∂λS|y

to 0 enforces the constraint that ∑k′ θk′|y = 1, hence[
∑d:Y d=y[γ

d
m(1)+ . . .+ γd

m(K)]
]

−λS|y
= 1 =⇒ −λS|y = ∑

d:Y d=y

(1) (3.33)

Putting these two equations together gives the update equation for πk|y given in (3.22) in the

definition of the algorithm.

For each θw|k collecting the relevant terms of L we have (∑d γd
m(k)

[
#(w,WWW d)log(θw|k))

]
) +

λW |kθw|k so for the partial derivative:

∂L
∂θw|k

=

[
∑
d

γ
d
m(k)[

#(w,WWW d)

θw|k
]

]
+λW |k = 0 =⇒ θw|k =

∑d γd
m(k)#(w,WWW

d)

−λW |k
(3.34)

Setting ∂L
∂λW |k

to 0 enforces the constraint that ∑w′ θw′|s = 1, and this implies

−λW |k = ∑
w′

∑
d

γ
d
m(k)#(w

′,WWW d) (3.35)

= ∑
d

∑
w′

γ
d
m(k)#(w

′,WWW d) (3.36)

= ∑
d

γ
d
m(k)∑

w′
#(w′,WWW d) (3.37)

= ∑
d

γ
d
m(k)× length(WWW d) (3.38)

Putting this expression for λW |k into (3.34) gives the update formula for θw|k that was given in

(3.23) in the statement of the algorithm.

Finally for each τy collecting the relevant terms of L we have (∑d:Y d=y ∑s γd
m(k) [log(τy)]) +

λY τy and so for the partial derivative:

∂L
∂τy

=

[
∑

d|Y d=y
∑

s
γ

d
m(k)[

1
τy
]

]
+λY = 0 =⇒ τy =

∑d|Y d=y(1)
−λY

(3.39)

Setting ∂L
∂λY

to 0 enforces the constraint that ∑y′ θy′ = 1, hence

∑d|Y d=1(1)+ . . .∑d|Y d=|Y |(1)
−λY

= 1 =⇒ −λY = ∑
d
(1) (3.40)
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Putting this value for λY into (3.39) gives the update equation for τy that was given in (3.24) in

the definition of the algorithm.

3.3.2 Proof of Monotone increase in likelihood

Let l(d;Θ) be the log probability of all the data at parameter setting Θ, ie.

l(d;Θ) = ∑
d

[
log

(
∑
k

P(S = k,Y d ,WWW d ;Θ)

)]
We need to show that EM iterations increase this, that is

l(d;Θ
m)≤ l(d;Θ

m+1)

It can be shown that (i) l(d;Θ) has a lower bound in terms of ∑d Qd(Θ,Θm) and a constant

not involving Θ, ie. l(d;Θ)≥ ∑d Qd(Θ,Θm)+h(Θm) and that (ii) this lower bound is actually

equal to the likelihood when Θ = Θm. Since maximizing ∑d Qd(Θ,Θm) is maximizing this

lower bound which is tight at Θ = Θm, the update must increase the total log probability.

(i) Lower bound for l(d;Θ)

l(d;Θ) = ∑
d

[
log

(
∑
S

P(S,Y d ,WWW d ;Θ)

)]
(3.41)

= ∑
d

[
log

(
∑
S

P(S|Y d ,WWW d ;Θ
m)

P(S,Y d ,WWW d ;Θ)

P(S|Y d ,WWW d ;Θm)

)]
multiply and divide (3.42)

= ∑
d

[
log

(
E

S|Y d ,WWW d ;Θm

[
P(S,Y d ,WWW d ;Θ)

P(S|Y d ,WWW d ;Θm)

])]
re-expressed as an expectation (3.43)

≥∑
d

[
E

S|Y d ,WWW d ;Θm

[
log
(

P(S,Y d ,WWW d ;Θ)

P(S|Y d ,WWW d ;Θm)

)]]
Jensen’s inequality (3.44)

= ∑
d

[
E

S|Y d ,WWW d ;Θm

[
log(P(S,Y d ,WWW d ;Θ))

]
+ E

S|Y d ,WWW d ;Θm

[
−log(P(S|Y d ,WWW d ;Θ

m))
]]
(3.45)

= ∑
d

[
Qd(Θ,Θm)

]
+h(Θm) (3.46)

(ii) this lower bound is actually equal to the likelihood when Θ = Θm

this means

l(d;Θ
m) = ∑

d

[
Qd(Θm,Θm)+h(Θm)

]
Backing up to the line where Jensen’s inequality is used
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∑
d

[
E

S|Y d ,WWW d ;Θm

[
log(

P(S,Y d ,WWW d ;Θ)

P(S|Y d ,WWW d ;Θm)
)

]]
If Θ is set to Θm, looking just at the term whose expectation is being taken:

log(
P(S,Y d ,WWW d ;Θm)

P(S|Y d ,WWW d ;Θm)
) = log(

P(S,Y d ,WWW d ;Θm)

P(S,Y d ,WWW d ;Θm)/P(Y d ,WWW d ;Θm)
)

= log(P(Y d ,WWW d ;Θ
m))

As this term does not contain S it can be taken out the summation:

E
S|Y d ,WWW d ;Θm

[
log(

P(S,Y d ,WWW d ;Θ)

P(S|Y d ,WWW d ;Θm)
)

]
= ∑

S
P(S|Y d ,WWW d ;Θ

m)log(P(Y d ,WWW d ;Θ
m))

= log(P(Y d ,WWW d ;Θ
m))∑

S
P(S|Y d ,WWW d ;Θ

m)

= log(P(Y d ,WWW d ;Θ
m)

and this means that the expression giving the lower-bound for l(d;Θ) is actually tight for Θ =

Θm.

3.3.3 MAP estimation

The parameter updates that were just derived are for the ML estimation. However EM can

easily be extended to produce a Maximum A Posteriori (MAP) estimate taking account of a

prior over the parameters. Whereas previously the M-step considered just the probability of

the virtual data corpus, the MAP version considers this in combination with the prior on the

parameters, solving the maximization:

argmax
πππ1:N ,θθθ 1:K

(
∏

d

[
∏

k
P(Y d ,S = k,wwwd ;τττ1:N ,πππ1:N ,θθθ 1:K)

γd(k)

])
×∏

t
Dirich(πππ t ;γγγπ)

×∏
k

Dirich(θθθ k;γγγθ )

or in log terms

argmax
πππ1:N ,θθθ 1:K

(
∑
d

[
∑
k

γ
d(k)× log(P(Y d ,S = k,wwwd ;τττ1:N ,πππ1:N ,θθθ 1:K

])
+∑

t
log [Dirich(πππ t ;γγγπ)]

+∑
k

log [Dirich(θθθ k;γγγθ )]
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This then works out to give these updates. For each year t and for each sense k

πt,k =
∑d(if Y d = t then γ[d][k] else 0)+ γπ [k]−1
∑d(if Y d = t then 1 else 0)+∑k(γπ [k]−1)

=
St,k + γπ [k]−1

∑k(St,k + γπ [k]−1)
(3.47)

For each sense k

θk,w =
∑d(γ[d][k]× f req(w ∈ wwwd))+ γθ [w]−1

∑d(length(wwwd))+∑w(γθ [w]−1)
=

Vk,w + γθ [w]−1
∑w(Vk,w + γθ [w]−1)

(3.48)

Referring back to section 3.1.2.2 concerning the mode of the Dirichlet, it is worth noting that

the above equations make πππ t the mode of Dir(πππ t ;St + γγγπ) and θθθ k is the mode of Dir(θθθ k;Vk +

γγγθ ). Practically, γθ [w]− 1 turns out to be a smoothing parameter, – call this ‘wc min’. For

implementation, ‘wc min’ was used and by default this was set to zero which is equivalent to

the Dirichlet prior γθ = 1 (uninformative prior).

The EM procedure is implemented in c++ – for the E-step, equation 3.21 is used to compute

the γ table for all data items and on computing this, the table of γ values are considered as

virtual counts for the M-step, computed using equations 3.22 and 3.23.

3.3.4 Parameter initialization

Concerning initialization, for an experiment on a target T having a corpus of occurrences corp,

we initialize P(w|S) to (1−λ )Pcorp+λPran, where Pcorp are the word probabilities in corp, Pran

is a random word distribution and λ is a mixing proportion, here set to 10−5. Also initially the

per-year sense distributions P(S|Y ) values are set to the same as each other. These start values

thus are very far from representing the senses as being drastically different to each other or

having any time variation at all. The outcomes of the EM experiments are discussed in chapter

6.

EM is one of the widely used parameter estimation technique for sense induction tasks.

Emms [2013], Emms and Jayapal [2014, 2015] have used this technique to study how words

and multi-word expressions respectively have changed over time. Additionally, Choe and Char-

niak [2013] and Jin et al. [2010] have used EM for the WSI tasks, where the former used WSI

to compare this method with Gibbs sampling (section 3.1.4).

3.4 Gibbs sampling estimation for Diachronic model

Given the model provided in the equation 3.16, we have the following posterior over the un-

knowns:

P(sss1:D,πππ1:N ,θθθ 1:K |ttt1:D,www1:D,τττ1:N ;γγγπ ,γγγθ )

A Gibbs sampler is derived here, to produce repeated samples of (sss1:D,πππ1:N ,θθθ 1:K) from this

posterior. Having generated the samples, the mean of sampled πππ1:N and θθθ 1:K values will be
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considered, thus providing a different type of point estimate provided by the EM algorithm.

As outlined in section 3.1.4, to do this sampling we need to compute a conditional probability

to sample a new value for each variable in a vector conditioned on the other values of the

variables.

The sampling distributions are first stated before proceeding to derive them. To give their

definitions, it is first necessary to define two count vectors, St,k is the number of data items with

time-stamp t and sampled sense k; Vk,v is the number of times word v occurs in data items with

sampled sense k.

The sampling formulas work out to be:

P(sd |sss−(d), ttt1:D,www1:D,τττ1:N ,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ ) =
πt,k ∏

W d

i=1 θk,wd
i

∑k′ πt,k′ ∏
W d

i=1 θk′,wd
i

(3.49)

P(πππ t |πππ−(t),sss1:D,www1:D, ttt1:D,τττ1:N ,θθθ 1:K ;γγγπ ,γγγθ ) = Dir(πππ t ;γγγπ +St) (3.50)

P(θθθ s|θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ;γγγπ ,γγγθ ) = Dir(θθθ k;γγγθ +Vk) (3.51)

The algorithm for generating Gibbs samples is provided in Algorithm 2

3.4.1 Deriving Gibbs sampling distributions

Sample for sense labels: To sample for a sense label for each document, compute the con-

ditional probability – P(sd |sss−(d), ttt1:D,www1:D,τττ1:Nπππ1:N ,θθθ 1:K ;γγγπ ,γγγθ ), which samples for a new

sense label for the current document based on the values of all other variables – sss−(d) is used

to represent the sense values for all documents except the current document. This is given by,

P(sd |sss−(d), ttt1:D,www1:D,τττ1:N ,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ ) =
P(sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ )

P(sss−(d), ttt1:D,www1:D,τττ1:N ,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ )

After canceling out terms that are not dependent on sense label, we get

P(sd |sss−(d), ttt1:D,www1:D,τττ1:N ,πππ1:N ,θθθ 1:K ;γγγπ ,γγγθ ) =
P(k|τt ;πππ t)∏

W d

i=1 P(wd
i |k;θθθ 1:K)

∑k′ P(sd |τt ;πππ t)∏
W d

i=1 P(wd
i |sd ;θθθ 1:K)

=
πt,k ∏

W d

i=1 θk,wd
i

∑k′ πt,k′ ∏
W d

i=1 θk′,wd
i

(3.52)

A sense label has to be sampled for each document (set of contexts) from the document

set (set of contexts). The conditional probability in equation 3.52 turns to be just the same

equation as in the ‘E-step’ provided in equation 3.21 of EM. The further differences between

EM and Gibbs sampling parameter estimation schemes are discussed in section 3.4.4.

Sample for sense parameter: To sample for a sense parameter π , compute the conditional
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as in text, assume data as
context words www1:D, time-stamps ttt1:D

assume K is a supplied no of senses
create S[D] // data sense labels
create S[T ][K] // see text
create V[K][V ] // see text
for itr:=1 to no-iterations do

set S[t][k] = V[k][v] = 0 for all t,k,v
for d:=1 to D do

for k:=1 to K do
compute λd [k] as in equation 3.52

end
k ∼ Discrete(λλλ d)
S[d] = k
S[td ][k] += 1 // incr count

for i:=1 to len(wwwd) do
V[k][wd

i ] += 1 // incr count
end

end
for t:=1 to N do

πππ t ∼ Dirichlet(πππ t ;γγγπ +S[t])
end
for k:=1 to K do

θθθ k ∼ Dirichlet(θθθ k;γγγθ +V[k])
end
Save πππ and θθθ values

end
return mean of πππ and θθθ from all iterations

Algorithm 2: Gibbs sampling estimation

probability – P(πππ t |πππ−(t),sss1:D,www1:D, ttt1:D,τττ1:N ,θθθ 1:K ;γγγπ ,γγγθ ). This is given by,

P(πππ t |πππ−(t),sss1:D,www1:D, ttt1:D,τττ1:N ,θθθ 1:K ;γγγπ ,γγγθ ) =
P(πππ t ,πππ−(t),sss1:D,www1:D, ttt1:D,τττ1:N ,θθθ 1:K ;γγγπ ,γγγθ )∫

πππt
P(πππ t ,πππ−(t),sss1:D,www1:D, ttt1:D,τττ1:N ,θθθ 1:K ;γγγπ ,γγγθ )

The numerator is ,

∏
d

[
P(τt ;τττ)P(sd |τt ;πππ t)

W d

∏
i=1

P(wd
i |sd ;θθθ 1:K)

]
×Dir(πππ t ;γγγπ)×∏

−(t)
Dir(πππ−(t);γγγπ)×∏

1:K
Dir(θθθ k;γγγθ )

For only some d, td = t. Also, the integral over πππ t in the denominator refers to only two terms

mentioning πππ t . Because of this, the fraction can be rewritten as:

∏d:td=t [πππ t,sd ]×Dir(πππ t ;γγγπ)∫
πππt

[
∏d:td=t [πππ t,sd ]×Dir(πππ t ;γγγπ)

]
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Re-expressing the numerator with S and using the definition of Dirichlet, we get

∏
k

πππ
St,k
t,k ×

1
β (γγγπ)

∏
k

πππ
γγγπ [k]−1
t,k =

1
β (γγγπ)

∏
k

πππ
St,k+γγγπ [k]−1
t,k

Hence the fraction can be written as:

∏k πππ
St,k+γγγπ [k]−1
t,k∫

πππt
[∏k πππ

St,k+γγγπ [k]−1
t,k ]

=
1

β (St + γγγπ)
∏

k
πππ
St,k+γγγπ [k]−1
t,k

where the last step uses the fact noted in equation 3.7 concerning the normalizing constant in

the Dirichlet. Hence we finally obtain

P(πππ t |πππ−(t),sss1:D,www1:D, ttt1:D,θθθ 1:K ;γγγπ ,γγγθ ) = Dir(πππ t ;γγγπ +St)

i.e., a particular posterior Dirichlet.

Sample for word parameter: To sample for a value for the word parameter θ , compute the

conditional probability – P(θθθ k|θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N) is given by

P(θθθ k|θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ;γγγπ ,γγγθ )=
P(θθθ k,θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ;γγγπ ,γγγθ )∫
k P(θθθ k,θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ;γγγπ ,γγγθ )

The numerator is

∏
d

[
P(τt ;τττ)P(sd |τt ;πππ t)

W d

∏
i=1

P(wd
i |sd ;θθθ 1:K)

]
×∏

1:N
Dir(πππ t ;γγγπ)×Dir(θθθ k;γγγθ )×∏

−(k)
Dir(θθθ−(k);γγγθ )

For only some d, sd = k. Also, the integral over θθθ k in the denominator refers to only two terms

mentioning θθθ k. Because of this, the fraction can be written to be

∏d:sd=k

[
∏

W d

i=1 θk,wd
i

]
×Dir(θθθ k;γγγθ )∫

θθθ k

{
∏d:sd=k

[
∏

W d

i=1 θk,wd
i

]
×Dir(θθθ k;γγγθ )

}
Re-expressing the numerator with V and using the definition of Dirichlet we get,

∏
v

θθθ
Vk,v
k,v ×

1
β (γγγθ )

∏
v

θθθ
γγγθ [v]−1
k,v =

1
β (γγγθ )

∏
v

θθθ
Vk,v+γγγθ [v]−1
k,v

Hence the fraction can be rewritten to be

∏v θθθ
Vk,v+γγγθ [v]−1
k,v∫

θθθ k
∏v θθθ

Vk,v+γγγθ [v]−1
k,v

=
1

β (Vk + γγγθ )
∏

v
θθθ
Vk,v+γγγθ [v]−1
k,v

where the last step uses the fact noted in equation 3.7 concerning the normalizing constant in
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the Dirichlet. Hence we finally obtain,

P(θθθ s|θθθ−(k),sss1:D,www1:D, ttt1:D,τττ1:N ,πππ1:N ;γγγπ ,γγγθ ) = Dir(θθθ k;γγγθ +Vk)

i.e., a particular posterior Dirichlet.

The update equations derived for building a Gibbs sampler are used in the algorithm pro-

vided in Algorithm 2 and the procedure is further used for c++ implementation. A number of

Gibbs samples are collected executing this algorithm for a number of times to get the actual

posterior of the parameter distribution. There is no recommendation on the number of samples

to be obtained to get the desired posterior – in other words the desired posterior can be consid-

ered to be a stable distribution. For experiment purposes, 10,000 samples were collected and

the first 1,000 were considered to be ‘burn-in’ iteration.

3.4.2 Why ‘burn-in’?

The burn-in tries to address: say we start at a random point, say at x and the Gibbs chain is

executed for n iterations, from which first b iterations are ignored considering them to be non-

stationary. The b iterations is the burn-in period. After the distributions obtained after b is

considered to be a stationary distribution and can be used for further computation.

3.4.3 Parameter initialization

The algorithm is not dependent on the initial values for the parameters, so they can be assigned

in a random fashion. Concerning the initialization two possibilities are made available through

command-line parameters; the first option is to initialize the parameters (πππ and θθθ ) by sampling

from Dirichlet distribution based on the hyper-parameters (γγγπ and γγγθ ), obtained from user-

inputs; and the second option is to initialize θθθ using the corpus word probabilities Pcorp with a

random word distribution Pran (ie., (1−λ )Pcorp +λPran, where λ is a mixing proportion, here

set to 10−5), and initialize πππ with per-year sense distributions. Further it is to be noted here

that symmetric priors are assigned for the hyper-parameters.

3.4.4 How is a Gibbs sampler different from the EM?

The aim of the Gibbs sampling algorithm here is to get a ‘mean’ of the parameter estimate,

while the EM algorithm in this work is used to get the MLE and MAP parameter estimates. The

EM algorithm provides a point estimate, while Gibbs sampling algorithm produces a number

of posterior samples which can be used to make further inferences.

For EM, in the ‘E-step’ we compute the conditional probability (in equation 3.21) and

treat these values to be virtual counts; while in Gibbs sampling estimation the conditional

probability in equation 3.52 turns to be just the same equation as in the ‘E-step’ of EM, but

instead of considering them to be virtual counts, a sense label is sampled from the conditional

probability distribution. Also, the parameters πππ and θθθ are sampled from Dirichlet distribution
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based on the sampled sense labels assigned to each document; while in EM, an MLE estimate

is made in the ‘M-step’ as an equivalent to the Dirichlet samples generated for the parameters.

3.4.5 Label switching

Label switching is a phenomenon identified in Monte Carlo Markov Chain (MCMC) sampling

techniques on mixture models that does not happen always. Gibbs sampling, being an MCMC

sampling technique it is expected to identify this phenomenon during experiments. In this

section, we discuss this problem briefly.

To explain this phenomenon, consider a dataset with occurrences of the word play having

two different senses. Sense 1 may represent a sentence or document with the word play being

used in the context of a game, while Sense 2 may represent a sentence or document with the

word play being used in the context of music. A sense discrimination model using Gibbs

sampling may not distinguish all the game related documents as Sense 1 and all the music

related documents as Sense 2. For some series of samples, the model might label music related

documents as Sense 1. This is called the problem of label switching. Therefore, it would be

unwise to consider the mean or mode of the labels from multiple samples.

According to Stephens [2000], the label switching problem arises when a symmetric prior

is used in Bayesian approaches to parameter estimation. In our Gibbs parameter estimation

scheme, symmetric priors (allowing the prior distributions γγγπ and γγγθ to have the same value)

are assigned to the latent variables πππ and θθθ . So label switching is expected to happen in this

case as well.

For testing purposes, a mock-dataset was considered for a target T with 8 data items con-

taining two senses ‘sense 0’ and ‘sense 1’ with just 2 vocabulary items A & B. The mock-

dataset is provided in table 3.2 where each data is provided with the sense annotations.

A A A B A T A B A A A 1990 0 A A A A B T A A A A A 1990 0
A A B A A T A A A A B 1990 0 A A A A A T A B A A A 1990 0
A B A A A T B A B A A 1990 0 B B B B A T B B B A B 1990 1
A A A A B T A B A A B 1990 0 B B B B A T B B B B B 1990 1

Table 3.2 – Mock dataset used to test label switching for a target T with window 5 containing
A and B as vocabulary items from a single year 1990. The 0′s and 1′s to the right are appended
providing a sense annotation for each data item.

The dataset is effectively a sample from a diachronic model with P(S|Y ) parameters π1990[0] =

0.75, π1990[1] = 0.25 and P(W |S) parameters θ0[A] = 0.8, θ0[B] = 0.2, θ1[A] = 0.15 and

θ1[B] = 0.85, where π1990[0] is the year 1990 prob for ‘sense 0’ and θ0[A] is the probability

for vocabulary item B in ‘sense 0’. The parameters values stated are the maximum likelihood

values for this sample. The unsupervised Gibbs sampling estimation procedure was run on this

sample for 10,000 and 50,000 iterations without the supplied sense choices. For these runs, the

sense and word distributions (πππ1990[k] and θθθ k[w]) for 10k samples and the first 50k samples are

plotted in figures 3.6 and 3.7. For all the figures reported in this section, every 5th sample was
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considered for plotting.

(a) Density and Gibbs samples for πππ2009 at 10k
iterations
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(b) Density and Gibbs samples for θθθ k[w] at 10k
iterations

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

S0_W0 Sense 0

N = 1800   Bandwidth = 0.01038

D
e
n
s
it
y

2000 4000 6000 8000 10000

0
.0

0
.4

0
.8

S0_W0 Sense 0

Itr

S
e
n
s
e
 P

ro
p

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

S0_W1 Sense 1

N = 1800   Bandwidth = 0.01038

D
e
n
s
it
y

2000 4000 6000 8000 10000

0
.0

0
.4

0
.8

S0_W1 Sense 1

Itr

S
e
n
s
e
 P

ro
p

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

S1_W0 Sense 0

N = 1800   Bandwidth = 0.01705

D
e
n
s
it
y

2000 4000 6000 8000 10000

0
.0

0
.4

0
.8

S1_W0 Sense 0

Itr

S
e
n
s
e
 P

ro
p

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

S1_W1 Sense 1

N = 1800   Bandwidth = 0.01705

D
e
n
s
it
y

2000 4000 6000 8000 10000

0
.0

0
.4

0
.8

S1_W1 Sense 1

Itr

S
e
n
s
e
 P

ro
p

Figure 3.6 – The Gibbs samples of sense πππ t [k] and word θθθ k[w] produced in with a 10k run are
plotted in (a) and (b); the left hand plots in (a) and (b) shows the density of 10k Gibbs samples
while the right hand plots show the Gibbs samples in 10k iterations.

(a) Density and Gibbs samples for πππ2009 at 50k
iterations

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

1990_S0 Sense 0

N = 9999   Bandwidth = 0.03465

D
e
n

s
it
y

0 10000 30000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 1990_S0 Sense 0

Itr

S
e

n
s
e

 P
ro

p

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

1990_S1 Sense 1

N = 9999   Bandwidth = 0.03465

D
e
n
s
it
y

0 10000 30000 50000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0 1990_S1 Sense 1

Itr

S
e
n
s
e
 P

ro
p

(b) Density and Gibbs samples for θθθ k[w] at 50k
iterations
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Figure 3.7 – The Gibbs samples of sense πππ t [k] and word θθθ k[w] produced in with a 50k run are
plotted in (a) and (b); the left hand plots in (a) and (b) shows the density of 50k Gibbs samples
while the right hand plots show the Gibbs samples of 50k samples.

In figures 3.6(a) and (b), the plots in the first column show a density plot17 based on π1990[k]

samples obtained from 10k iterations and the second column shows a sequence of samples of

θk[w] for vocabulary w from sense k. In (a), the plots in the first row correspond to π1990[0]

Gibbs samples and the plots in the second row correspond to πππ1990[1] samples, whereas in (b)

17The density plot was made using the ‘density’ function available from ‘zoo’ package in ‘R’.
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each row of plots correspond to Gibbs samples for θ0[A], θ0[B], θ1[A] and θ1[B]. All density

plots in this figure show a single mode, signalling no label switching. Similar to this, figures in

3.7 (a) and (b) shows plots for 50k samples. When the algorithm is run for a longer number of

iterations (50k in this case), label switching happens and this can be seen from the density plots

in the form of two modes in each chain of samples (see left hand plots in figures 3.7 (a) and

(b)). Further label switching is also evident when the samples are plotted over iterations (see

right hand plots in figures 3.7 (a) and (b)). During label switching, considering the mean of the

samples will not be appropriate. The rest of this shows non-occurrence of label switching on a

larger mock data set.

A A A B A T A B A A A 1990 0 A A A A B T A A A B A 2000 0
A A B A A T A A A A B 1990 0 A A A A B T A A A A A 2000 0
A B A A A T B A B A A 1990 0 A B A A B T A A A B A 2000 0
A A A A B T A B A A B 1990 0 B B B A B T B A B B B 2000 1
A A A A B T A A A A A 1990 0 B B A B B T B B B B A 2000 1
A A A A A T A B A A A 1990 0 B A B B B T A B A B B 2000 1
B B B B A T B B B A B 1990 1 B B B B A T B A B B A 2000 1
B B B B A T B B B B B 1990 1 B B B B A T B A B B B 2000 1
B A B B A T B B B A B 1990 1 B B B A B T B A B B B 2000 1
A A A B A T A B A A A 1990 0 A A A A B T A A A B A 2000 0
A A B A A T A A A A B 1990 0 A A A A B T A A A A A 2000 0
A B A A A T B A B A A 1990 0 A B A A B T A A A B A 2000 0

Table 3.3 – Mock dataset used to test label switching for a target T with window 5 containing A
and B as vocabulary items from two years 1990 and 2000. The 0′s and 1′s to the right are appended
providing a sense annotation for each data item.

(a) Sense distributions at 50k iterations
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(b) Word distributions at 50k iterations
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Figure 3.8 – The Gibbs samples of sense and word distributions produced on a larger dataset with
24 items are plotted in (a) and (b); the left hand plots in (a) and (b) shows the density of 50k Gibbs
samples from 50k iterations and the right hand plots show the Gibbs samples of 50k samples.

Table 3.3 gives a larger mock dataset, with two year data. The Gibbs sampling algorithm

for the diachronic model was also executed on this dataset for 50k iterations with uninformed
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prior over the parameters. Figure 3.8(a) shows the sense distributions πππ t [k] and (b) the word

distributions θθθ k[w] for 50k Gibbs samples. In this case, no label-switching is apparent even

after 50k iterations. The plots suggest that as the data size increases, there is less possibility

of seeing a label switching in the earlier part of the Gibbs chain. In all experiments reported

later the above types of plots are produced and can be consulted to check for evidence of label

switching.

3.4.6 Credible interval

Gibbs sampling produces a number of samples from the posterior on the parameters. It is

possible to consider a point estimate in the form of mean. A Bayesian credible interval (CI)

is an interval in the domain of a posterior probability distribution that provides a range where

a given percentage of posterior distribution lies [Box and Tiao, 1992]. For a given percentage

there could be lots of such intervals. According to Box and Tiao [1992], a HPD interval has

the property that a particular percentage is included and every point included in the interval has

higher posterior density than every point excluded. Equivalently the interval can be thought of

as what is found if a horizontal line of a density value is raised until the area under the curve

between the points where it meets the density is the required size. This is shown using a sample

density plot in figure 3.9 with 90% HPD interval.
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Figure 3.9 – A Density plot showing 90% HPD interval with area under the curve shaded.

There are a number of algorithms to compute HPD (discussed in CHEN and SHAO [1999]),

but we used an R package called LaplaceDemon18 to compute the HPD intervals for plotting

purposes (can be seen from the various plots in chapter 6).

In this section, the Gibbs sampling updates were first derived for the diachronic model,

then there was a discussion about the different parameters that will be used to produce Gibbs

samples, then the label switching problem that is expected to occur with Gibbs estimation and

finally about the credible intervals. The outcomes of different experiments based on the Gibbs

18Available from http://www.bayesian-inference.com/software – last accessed on Jan 21, 2016
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sampling algorithm are discussed in chapter 6.

3.5 The model of Frermann and Lapata [2016]

Earlier in section 2.4, we mentioned of a related proposal from Frermann and Lapata [2016].

It is a generative probabilistic model, and like the model just described, given a time t, a sense

k is chosen, and for each t there is a parameter πππ t for P(S|Y ). Then given a sense k and a time

t, the sequence of words www is chosen, and for each sense k and time t, they have a parameter

θθθ t,k for P(www|S,Y ) (they have different notations for the parameters, but are adapted here for

the convenience of comparisons that will be made with the current proposal). Thus one key

difference to the proposal made here is that they do not assume the conditional independence.

P(www|S,Y ) = P(www|S) as we do.

θt,k

πt

sd

κπ

wd
i

κθ

πt+1

θt+1,k

sd wd
i

W d

Dt

W d

Dt+1

K

Figure 3.10 – Plate diagram for the model used in Frermann and Lapata [2016]

Their model is shown in figure 3.10 as a plate diagram19. The succession of the plates with

repetition count Dt and Dt+1 represent the same generative story as that used in our model 3.2.

As in our model, as one proceeds through time, at each time t a particular sense parameter

πππ t is assumed. In contrast to our model, the word distribution for a sense k are not assumed

independent of time, and so as one proceeds through time, at each time, t and for each sense k,

there is a particular word probability parameter θθθ k,t .

They also make different assumptions concerning priors on parameters. They do not adopt

assume the sequences of πππ t and θθθ t,k values are draws from Dirichlet. Instead for each they

wish to have a prior which, in their words

19It is adapted from Figure 1 of Frermann and Lapata [2016]
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encourages smooth change of parameters at neighboring times, in terms of a first

order random walk on the line

To do this first (see section 3.1 of their paper) they treat the πππ t and θθθ t,k vectors (K and V

dimensional) as images under the so-called logistic transformation of other underlying vectors

normal. For example, this means that a K dimensional πππ t , each dimension of which is between

0 and 1, is seen as the image under the logistic transformation, LN, of a K dimensional vector

ηηη t , each dimension of which is between −∞ and +∞: πt [k] = LN(ηt [k]) = eηt [k]

∑k′ eηt [k′]
. These

underlying vectors are then seen as draws from multivariate Gaussian. Technically this means

that each πππ t and θθθ t,k may be seen as drawn from a so-called logistic normal prior. It is via

assumptions about how values of the dimensions of parameters of these Gaussian may vary

over time that the modeling of smoothness comes in (see section 3.2 of Frermann and Lap-

ata [2016]). This is done via the use of intrinsic Gaussian Markov Random Fields (iGMRFs)

Mimno et al. [2008], Rue and Held [2005]. Without attempting to give all the details of iGM-

RFs, where Φ1 . . .ΦN is a sequence of length N (the number of time points), an iGMRF with

precision hyper-parameter κ may be defined with the effect that when sequences are drawn

from this prior, the differences between successive values will be distributed according to a

Gaussian with mean 0 and variance κ−1

Φt −Φt−1 ∼N (0,κ−1)

Thus a high κ favors small changes in successive values. At the same time this prior does not

impose any overall mean on the values in the sequence.

They assume such an iGMRF prior for the means of the Gaussian underlying the πππ t values,

a prior with precision parameter κπ . This is shown in the upper part of the plate diagram in

figure 3.1020. Similarly they assume an iGMRF prior for the means of the Gaussian underlying

the θθθ t values for each k, a prior with precision parameter κθ . This is shown in the lower part

of the plate diagram in 3.10.

Concerning parameter estimation for such a model, they point out (see section 3.3 of Fr-

ermann and Lapata [2016]) that

The logistic normal prior is not conjugate to the multinomial distribution. This

means that the straightforward parameter updates known for sampling standard,

Dirichlet-multinomial, topic models do not apply.

They then proceed to describe a technique due to Mimno et al. [2008] by which it is nonetheless

possible to obtain a Gibbs sampling method for estimation.

In applying this model, for the succession of θθθ t,k values, they set κ to a high value, so that

although θθθ t,k does not have to be constant over time, only small variation is anticipated by the

prior. The succession of πππ t values is allowed greater variation.

20The diagram thus omits a few details of the pathway from κπ to the πππt values
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It seems fair to say that the model we have proposed is a simpler one than that of Frermann

and Lapata [2016], and that in many respects the model of Frermann and Lapata [2016] is a

logical conceptual development of the model proposed here, though it was not developed in

that way. In a certain sense, from the perspective of their model, our model is what would

be arrived at by (i) letting κ for θθθ tk tend to ∞, preventing any change of word-given-sense

probabilities in successive times and (ii) letting κ for πππ t tend to 0, allowing arbitrary change of

sense-given-time probabilities.



Chapter 4

Evaluation & analysis options for
neologism

An emerging sense can possibly be inferred using the diachronic model introduced in chapter

3. But evaluating this work is challenging as there is no pre-existing sense-annotated dataset

that can be used for evaluation purposes. So, in section 4.1 we consider a range of possible ap-

proaches to ground truth for sense emergence that have been used, noting their advantages and

disadvantages. A new approach is also put forward, and following on from this, the specifics

of how emergence times will be extracted from time-lines in this thesis. Further in section 4.2

there is a discussion on the different analysis schemes used to analyze the parameter outcomes

in ascertaining the neologistic sense.

4.1 Ground truth for sense emergence

To evaluate the proposed diachronic model we need to know the date at which a neologistic

sense emerged in a particular corpus – call this C0 – this is the time at which the neologistic

sense for the word departed from close to zero and continued to climb thereafter (as shown in

figure 4.1).

Given a large-scale, time-stamped and sense-labelled corpus it would be easy to determine

C0, a time at which the new sense for a word first departed from zero frequency. But this kind

of corpus does not exist, which has also been observed by Cook et al. [2013], Lau et al. [2012].

Therefore it is a hard problem in establishing the ground truth concerning sense emergence,

against which to evaluate the outputs of any sense emergence system.

Without a labelled data-set, the simplest of all possibilities is to rely on native speaker

intuition about the timing of sense emergences. This is at best applicable to recent innovations

and clearly the subjectivity of such an approach is far from ideal. This approach to ground-truth

was adopted by Mitra et al. [2014]. This section discusses some more objective possibilities.

Firstly in sections 4.1.1 and 4.1.2 two possible approaches that exploit dictionaries are

discussed, both of which have been adopted in prior work, and their advantages and drawbacks

57
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are noted. Then in section 4.1.3 we will propose a novel ‘tracks-plot’ approach to providing

evidence of the location of C0. Then in section 4.1.4 we discuss specifically how the time-lines

of inferred sense-probabilities will be assessed to determine whether a neologism has been

detected, and if so what its emergence time is. The same processes are involved in determining

a reference time from the time-lines involved in a ‘tracks-plot’.

4.1.1 Dictionary first citation

A native speaker may be confident about the recent lexical innovations in a language, but

in pursuit of being objective and considering innovations that are less recent, it is natural to

consider dictionaries.

Historically oriented dictionaries such as the Oxford English Dictionary strive to maintain

the earliest citation date1 of a word-sense pair. Call this Dc
0. Dc

0 is not the same as C0 (shown

in figure 4.1) as the latter indicates the time at which the word’s novel sense started to catch

on, which may well be quite a time after its very first use. It is a very reasonable assumption,

however, that Dc
0 is a lower-bound for C0 i.e., Dc

0 ≤ C0. This could only fail to be so if the

dictionary compilers have failed to do their work properly.

We will adopt this as one kind of test on the inferred emergence date: if a system were

to give an inferred emergence date substantially earlier then Dc
0 that would be grounds for

counting the system as having made a mistake.
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Figure 4.1 – A hypothetical sense emergence plot - Dictionary and corpus emergence dates (Dc
0 &

C0) annotated

For example consider the target mouse in its pointing device sense. For this sense Dc
0, the

dictionary first citation date is 1965, and the citation comes from a research paper published

in 1965. The mouse computer peripheral only became popular considerably later: according

to Wikipedia [2016] its use took off in the early 1980s. So it would not be surprising if C0,

the date at which this use of the term mouse departed and continued to climb from zero in the

n-grams books based data were to be substantially later than 1965. The ‘tracks-plot’ technique

discussed further in the next section 4.1.3 provides compelling evidence of exactly this.
1brief information on how OED updates its online dictionary is provided in http://www.

oxforddictionaries.com/words/questions-about-dictionaries

http://www.oxforddictionaries.com/words/questions-about-dictionaries
http://www.oxforddictionaries.com/words/questions-about-dictionaries
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4.1.2 Dictionary first inclusion

A number of dictionaries have a sequence of editions and so a particular word-sense pairing

will have an earliest appearance in such a sequence. So a close inspection of a succession of

dictionaries can provide a date based on first inclusion of a word-sense pair – call this Di
0.

It seems dictionary compilers weigh up a complex combination of subtle considerations in

making decisions on whether or not to include a new sense entry in a new dictionary edition

[Barnhart, 2007, Sheidlower, 1995, Simpson, 2000] some of them commercial. So some cau-

tion is probably appropriate in relating Di
0, a dictionary first inclusion date, to C0, the ‘true’

time of emergence of the particular word-sense pairing. It seems likely that C0 will be earlier

than Di
0, as dictionary compilers wait to see if something novel persists or fades away.

There are some disadvantages in seeking to make reference to a dictionary first inclusion

date, Di
0. One is the low time resolution, as it follows the publication cycle of the dictionaries.

New editions do not appear on a yearly basis, but at longer and varying time intervals, so that 5,

10, 15 year intervals, or even longer are quite possible. A second difficulty is just the practical

one of gaining access to all of the different versions of a dictionary, and the somewhat labor

intensive process of consulting them all to find out whether a target word-sense pair is found in

them.

Using dictionary first inclusion date, Di
0 as the main source of ground-truth about sense

emergence was the approach taken by [Cook et al., 2013, 2014, Lau et al., 2012], [Rohrdantz

et al., 2011] and [Tang et al., 2015], as was noted earlier in section 2.3. It will not be made the

main such source in the current thesis work, with the emphasis placed instead on the approach

described in section 4.1.3. Nonetheless in section 6.3 where the experimental outcomes for

particular targets are discussed, some Di
0 dating information will be noted.

4.1.3 Tracks-plots

In the previous section 4.1.1, we discussed one way to test an inferred emergence date by

checking that it is later than Dc
0, the dictionary first citation date. In this section a proposal is

made for a method that uses a so called ‘tracks-plot’, to establish C0, the actual sense emergence

time in the corpus, against which an inferred corpus emergence time can be compared.

For a target word T , there are words which it is intuitive to expect in the vicinity of T in its

neologistic sense of T , but not in its vicinity in its other senses. For example, consider the target

mouse (introduced in the previous section 4.1.1). When used in its neologistic sense it is likely

to co-occur with words like click, button, pointer and drag. The idea behind this ‘tracks-plot’ is

if the per-year probabilities for such words in the dataset P(w|Y ) are plotted, they are expected

to be close to 0 during an initial period and take off at C0 – the corpus emergence date. For this

example, the per-year probabilities P(w|Y ) for the words click, button, pointer and drag in the

mouse dataset are plotted in figure 4.2. For this plot, the per-year word probability values are

re-scaled to a new arbitrary range 0 and 1. Additionally, a moving average of these probability

values are computed (3 year values are averaged) to get a smooth plot without jaggedness.
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Figure 4.2 – Tracks plot for mouse - True C0 annotated

In the plot seen in figure 4.2, all the words associated with neologistic sense of the target

mouse starts at near 0 and takes off in the year 1983. This is a strong indication that C0, the

true corpus emergence date for this sense, is 1983. Also plotted for comparison is Dc
0, which is

1965 in this case, and considerably earlier than the apparent C0.

For this technique to establish a value for C0 for a given sense of a target word it is necessary

to use intuition to establish which words might be especially prominent with the given sense.

But after that the corpus data itself indicates a time at which these words have sudden increase

in probability of co-occurring with the target. So this is an improvement over relying purely

on speaker intuition to establish the time of a sense’s emergence ie. the very simplest of all

possibilities mentioned at the beginning of 4.1.

4.1.4 Emergence time detection

We have suggested the use of a so called ‘tracks-plot’, to establish C0, the actual sense emer-

gence time in the corpus, against which an inferred corpus emergence time can be compared.

This suggests the following approach (actually followed in COLING paper Emms and

Jayapal [2016])

The algorithm produce a time-series of probabilities for senses and a plot of these

is made and visually inspected. This might reveal one sense to have a neologistic

pattern, being 0 or near zero for a certain span of time, and then climbing away

from this. Based on visual inspection, a time (or time-period), is determined as the

apparent emergence time inferred by the algorithm. In a similar fashion, by visual

inspection of an appropriate ‘tracks-plot’, an apparent true sense emergence time,

C0, can be determined. These two times can be compared.
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The visual inspection aspect of this is perhaps not ideal: someone can object that the sub-

jectivity can be exploited to give an overly favourable evaluation. So an automatic, objective

procedure by which to calculate an emergence time (if any) from a time series would be prefer-

able.

The desire to detect changes in a time series has arisen in a wide variety of application areas,

such as quality control in manufacturing processes, navigation system monitoring, seismic

data processing, medical condition monitoring, climate change detection, audio segmentation,

human activity analysis among others [Basseville and Nikiforov, 1993], [Adams and Mackay,

2007], [Aminikhanghahi and Cook, 2017]. There is quite a substantial literature concerning

this, where it is often referred to as ‘change point detection’. This is prima facie relevant to the

topic of this section, the objective determination of a sense emergence time, even if ‘change

point detection’ has a much wider scope. Some of this work is briefly reviewed below. We go

on, however, to propose a simple procedure of our own for detecting an emergence time from

our time series.

A lot of work in this area uses a ‘mean-shift’ model, originally considered by Page [1955],

and developed by many since. The following outline exposition is based on Basseville and

Nikiforov [1993] and Granjon [2013]. One supposes there is a time-series of (real-valued)

observations xxx1:N , and then considers two possibilities for their generation. One possibility

(HA) is that for some j ≤ N there is an initial part xxx1: j−1 drawn from one distribution, say a

Gaussian, with mean µ0, and that the remnant xxx j:N is drawn from a second distribution, with

mean µ1. The other possibility (H0) is that all are drawn from a single distribution, with mean

µ0. The aim is to determine whether the observations are best explained by supposing there

actually was a shift between distributions (ie. HA), and then if there was, to determine the value

of j. Algorithms have been developed concerning this based on the (log) of the ratio between

the probability of the data under the two hyptheses, which comes to

L j =
i=N

∑
i= j

log(
p(xi; µ1)

p(xi; µ0)
) or

i=N

∑
i= j

s(xi) where s(xi) = log(
p(xi; µ1)

p(xi; µ0)
)

If the two distributions are known, the basic algorithm proposes decision HA vs H0 can be

based on the size of the generalised likelihood, G, defined to be max1≤ j≤NL j, and that a change

time ĵ can be estimated via the maximising point argmax1≤ j≤N L j. When a cumulative sum

function Sn is defined as ∑
n
i=1 s(xi), these can be re-expressed

G = SN− min
1≤ j≤N

S j−1 and ĵ = argmin
1≤ j≤N

S j−1

leading to the approach being known as the cumulative sum or CUSUM algorithm. Figure 4.3

replicates an example of this procedure taken from Granjon [2013]

This rather unlikely situation of the two distributions being completely known is the starting

point for further developments, such as when there are two Gaussians of unknown means. One

line of development generalises the likelihood ratio further, replacing µ0 and µ1 with their
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(a)

(b)

(c)

Figure 4.3 – example taken from Granjon [2013]. (a) data, which is samples from successive
Gaussians with means µ0 = 0, µ1 = 1, changing at sample 1000. (b) generalised likelihodd G,
which reaches a threshold value of 100 at sample 1201 (c) cumulative sum Sn giving estimated
change-point at sample 1001

maximum likelihood estimates for each conjectured change-point j. For a range of variants

of this style of approach there is theoretical work concerning optimality, in various senses,

[Lorden, 1971] [Csörgö and Horváth, 1997]

It seems that in the most standard application of change point detection algorithms, the

time series considered are values of an observed variable: in the above mean-shift model, they

are treated as samples from an unknown underlying sequence of Gaussians. On these grounds

alone it seems fair to say that the assumptions of this mean-shift model do not transfer, at

least straightforwardly, to the problem which is the subject of this section, that of detecting

emergence in an estimated time-series π1:N resulting from running our EM and GS procedures.

The values in our time-series π1:N are sense probabilities, and in the theoretical development

of the algorithms are seen as modes or means of particular posterior Dirichlets, not as sequence

of samples from a sequence of Gaussians.

It may well be that one of the other extant techniques in the general area of change point

detection (surveyed in Aminikhanghahi and Cook [2017]) is perfectly suited to our sense emer-

gence task. We make no claim to have exhaustively considered the possibilities. In this regard

the following quote from Aminikhanghahi and Cook [2017] is worth nothing

Several artificial and real-world datasets have been used to measure the perfor-

mance of CPD algorithms. It is important to notice that an objective comparison

of the performance of different CPD methods is very difficult due to the use of these

different datasets.

This suggests that even with considerably greater review of extant work it would still be diffi-

cult to identify what technique is the most compelling candidate to be adopted for this sense-

emergence dating task.

We turn now to specifying the simple procedure which we will use. Informally we have de-

scribed a neologistic pattern as being for an initial period zero or near zero, and then departing

from this and continuing to climb away from this. We fix some criteria encapsulating this.
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Function EmergeTime(π):
Surges = /0
for n:=1 to N-r do

if SurgeStart(n,π) then Surges = Surges ∪{n}
end
if Surges 6= /0 then return min(Surges)
else return /0

Function SurgeStart(n,π):
h = false, l = false
if |{n′ : n < n′ < n+ r and Step(n′,π)}| ≥ 85% o f r then h = true
if |{n′ : n′ < n and π[n′]≤ 0.1}|> 80% o f n then l = true
if h and l then

return true
else

return false
end

Function Step(n′,π):
if π[n′]−π[n′−1]≥ 2/3% o f max(π) then return true
else return false

Algorithm 3: EmergeTime: input is sequence of sense probabilities for some particular
sense, r is the required length of a run of year of sustained increase and in all the later
experiments this was set to 10.
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To find a sense emergence time from the inferred sense distributions P(S|Y ), we look for

any year n which is the beginning of a run of years of sufficient year-on-year increase in prob-

ability. We set the run of years to be length 10, and define sufficient increase to require 85%

of the years in the run show a climb of 2/3% towards the time series’ maximum value. The

time series might climb over a prolonged period of time so that several years count as being

at the beginning of a period of steady growth, in which case we seek the earliest such year.

Additionally such a year ought to be such that 80% of its predecessors are are lower than 0.1.

This is stated in pseudo-code in algorithm 3.

For example, applied to one of the inferred sense probability series for mouse obtained

using EM, the years 1982 1983 1984 1985 1986 1987 1988 qualify as starting 10 year runs of

sufficiently strong growth and the earliest of these would be indentified by the procedure as an

emergence time, which is depicted in the plot below.
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Then to have a reference date based on a ‘tracks’ plot the same procedure is applied to the

single time series obtained by taking a mean of the separate tracks. Below to the left a tracks

plot for some words thought especially indicative of the neologistic sense of mouse is shown,

click, button, pointer and drag and to the right is shown the mean of these together with an

emergence time which is based on the above procedure.
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4.2 Analyzing parameter outcomes

Earlier in this chapter, the different ways to evaluate the neologistic sense identified by the pro-

posed diachronic model were discussed. As discussed earlier, the expectation for a neologism
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sense is to start at close to zero and depart in the later years. The OED and ‘tracks’ plots are the

evaluation schemes used to evaluate the identified neologistic sense, but before even going for

the evaluation, it would be better to confirm that the inferred neologism sense is the expected

neologism sense – for this, further analysis schemes are proposed in this section.

4.2.1 gist words

There are a number of changes such as world changes and opinion changes (discussed earlier

in section 1.6) but not all these are considered as language changes. When the EM and/or the

Gibbs sampling inference procedures appears to have inferred a neologism sense – as suggested

by the parameter plot made with πππ – it is still open to doubt whether or not the ‘inferred’ trend

is strongly related to an anticipated sense emergence. One way to try to confirm or dis-confirm

this is to look into the word-parameter θθθ outcomes2. Consider the following illustrations for

world changes and opinion changes:

Suppose since 1980 there was a substantial increase in mice population, which in

turn brought a lot of diseases. One might expect a parameter component θk with

increasing probability after 1980. If the high probable words are analyzed in θk, one

would expect words such as disease, population and deaths.

Now, let us suppose since 1980 humans found that mice are very intelligent. For

such a parameter component θk, one might still find increasing probability after 1980.

When the high probable words are analyzed, one might expect words such as feeling,

emotion and anxious.

So world or opinion changes might lead to a component being inferred, whose prevalence varies

in a distinctive way over time, but such variation should not be taken as a language change. This

suggests that one inspect in some way the word probabilities of a particular component.

As for each k, θθθ k is a length V vector of probabilities, where V is the size of the vocabulary,

it is something of an issue how best to ‘inspect’ θθθ k.

For a given sense k, we propose to extract a set of top ranked words from θθθ k that are par-

ticularly representative of the distribution. Let us call these the gist words for a particular sense

k. Simply ranking by decreasing probability is not going to be revealing as the top positions

will be dominated by generically frequent words (the, and etc). Two different ways of ranking

to get the gist words are discussed below.

Ranking by comparing a sense-specific word distribution to the corpus word distribu-
tion: One could extract gist words from the parameter values θθθ k representing P(w|S = k) by

computing the ratio of P(w|S = k) to Pcorp(w), where Pcorp(w) is the probability of the word w

in the corpus. From this ratio, the words can be ranked in the descending order to get the top

words associated with each sense. The result of such top 30 gist words ranked in descending

order made from the parameter outcomes for the target mouse example introduced in section

2Recall from section 3.2, πππ and θθθ are the parameter representations for the diachronic model.
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4.1.1 is provided in table 4.1.

P(w|S0)/Pcorp(w) P(w|S1)/Pcorp(w) P(w|S2)/Pcorp(w)
cat|S0 = 3.2008 button|S1 = 2.48445 cells|S2 = 3.99281
a|S0 = 3.08358 pointer|S1 = 2.39148 in|S2 = 3.58596
rat|S0 = 3.02426 le f t|S1 = 2.32885 embryo|S2 = 2.98432
as|S0 = 2.87897 right|S1 = 2.21559 o f |S2 = 2.90259
”|S0 = 2.83585 release|S1 = 2.18371 mammary|S2 = 2.8724
keyboard|S0 = 2.78903 over|S1 = 2.17976 embryos|S2 = 2.7731
−|S0 = 2.6673 down|S1 = 2.13141 brain|S2 = 2.62479
, |S0 = 2.55959 move|S1 = 2.12581 cell|S2 = 2.59001
anti|S0 = 2.55087 your|S1 = 2.10488 model|S2 = 2.52385
game|S0 = 2.52766 to|S1 = 2.02401 tumor|S2 = 2.46576
like|S0 = 2.24782 drag|S1 = 2.02375 END |S2 = 2.44903
or|S0 = 2.14626 you|S1 = 2.01798 development|S2 = 2.40309
and|S0 = 2.10188 sub jected|S1 = 1.97732 virus|S2 = 2.40251
such|S0 = 2.10085 hold|S1 = 1.92721 /|S2 = 2.35402
rabbit|S0 = 2.00737 on|S1 = 1.92396 house|S2 = 2.33416
In|S0 = 1.98873 when|S1 = 1.84758 .|S2 = 2.31284
little|S0 = 1.94476 click|S1 = 1.83455 (|S2 = 2.30812
not|S0 = 1.85856 then|S1 = 1.82935 gene|S2 = 2.28547
clicks|S0 = 1.84501 Release|S1 = 1.80291 :|S2 = 2.24056
was|S0 = 1.82027 use|S1 = 1.78597 f rom|S2 = 2.20633
have|S0 = 1.80394 cursor|S1 = 1.76889 bone|S2 = 2.1937
human|S0 = 1.78778 the|S1 = 1.7626 Mus|S2 = 2.13185
f ield|S0 = 1.77676 clicking|S1 = 1.72484 marrow|S2 = 2.10241
IgG|S0 = 1.77356 is|S1 = 1.6685 skin|S2 = 2.10138
that|S0 = 1.7491 Move|S1 = 1.66106 embryonic|S2 = 2.07304
but|S0 = 1.74615 position|S1 = 1.65671 adult|S2 = 2.00754
than|S0 = 1.73704 START |S1 = 1.64541 during|S2 = 1.89012
′|S0 = 1.72155 press|S1 = 1.62483 early|S2 = 1.88799
quiet|S0 = 1.71718 Click|S1 = 1.58942 )|S2 = 1.88013
−−|S0 = 1.70512 while|S1 = 1.58375 musculus|S2 = 1.8767

Table 4.1 – Top 30 gist words for the target mouse given each sense listed here are ranked by
computing the ratio of P(W |S = k) to Pcorp(W ).

Ranking by two sense-specific word distributions: Another possibility to gain insight into

θθθ k, the word distribution for a particular k, would be to compare to the other θθθ k′ , making a

succession of rankings according to P(w|S=k)
P(w|S=k′)

From table 4.1, the gist words obtained by computing a ratio of P(w|S = k) to Pcorp(w)

seem very consistent with the neologistic sense ‘sense 1’ for the target mouse representing a

‘computer pointing device’. Although the other senses may not be of interest for our work, it

can be observed that ‘sense 0’ consistently represents the ‘animal’ sense and ‘sense 2’ repre-

sents the ‘biological experiments’ sense of the target mouse.

4.2.2 Sense examples

Getting sense examples can be considered as an additional analysis option to be clear about

what the neologistic sense represents. The sense examples can be obtained by computing the

conditional probability P(S|Y,www) for each data item, given by

P(S = k|Y = td ,www = wwwd) =
P(S = k,Y = td ,www = wwwd)

∑S=k′ P(S = k′,Y = td ,www = wwwd)
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Data items with P(S = SENSE 1|Y = 1990,www)

L L Drag the T down the R R 1 succession without moving the T R R R R 1
L L dragging the T over them R R 1 L just drag the T pointer R R R 1
L L drag the T pointer through R R 1 L just release the T button R R R 1
L L Drag the T pointer to R R 1 dialog box with the T R R R R 1
L L Drag the T down and R R 1 L displayed when the T pointer R R R 1
L L Drag the T to highlight R R 1 direction you drag the T R R R R 1
L L drag the T pointer down R R 1 L L distance the T has moved R R 1
L L drag the T to move R R 1 L directly with the T . R R R 1
L L drag the T pointer across R R 1 displayed , move the T R R R R 1
L L roll the T to the R R 1 Enter or click the T R R R R 1
row height with the T R R R R 1 highlighted , release the T R R R R 1
L row with the T , R R R 1 highlighting it with the T R R R R 1
L L roll the T on your R R 1 highlight it with the T R R R R 1
L L roll the T over the R R 1 pixel coordinates of the T R R R R 1
sure to release the T R R R R 1 L shrill command the T controls R R R 1

Table 4.2 – Top 30 sense examples words for the target mouse given ‘sense 1’ from the year 1990
with their probabilities listed here are ranked by computing P(S|Y,www).

Joint probabilities of the numerator and denominator are computed as in equation 3.14 and

use the inferred parameter values to get the conditional probability value for each data item for

each sense S. These conditional probabilities for each data item are ranked in descending order

to get the most probable sense examples for each sense. Such top examples for each sense in

different years can be produced for comparison. It is expected that there are no sense examples

for the years before the corpus emergence date C0 for the target T .

As a further note, the sense examples can be used to compare the examples from two

different years – years before and after C0 of the neologistic sense – consider them to be Y o
c0

and Y n
c0

respectively. The intuition here is, there is no expectation of sense examples from the

neologistic sense in Y o
c0

as P(S|Y ) before C0 is expected to be close to 0; and there is a number

of sense examples in Y n
c0

.

Consider the mouse example, for which the gist words were produced in the previous sec-

tion 4.2.1 – here we will see the sense examples for the neologistic sense (sense 1) from 1990

– a time after the true emergence date. In table 4.2, a list of top 30 sense examples for the

neologistic sense ‘sense 1 from the year 1990 (after C0) is produced. From the examples listed,

it can be observed that all the ‘sense 1’ examples from the year 1990 (after ‘true C0’) are

representative of the ‘computer pointing device’ sense.
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Chapter 5

Diachronic dataset & target
possibilities

In chapter 3, a simple ‘diachronic’ model was introduced with a sense parameter P(S|Y ) and

a word parameter P(www|S) to identify a novel sense for a given target T from a time-stamped

dataset containing occurrences of T . The parameter updates for the estimation procedures to

infer parameter estimates from the data were derived in sections 3.3 and 3.4. To infer values

for the parameters of the diachronic model, there is a requirement for time-stamped datasets

coming from a substantial time-period. Therefore it is important to establish the dataset possi-

bilities for this work. In this chapter some of the different dataset possibilities for time-stamped

data (sections 5.1, 5.2), and further details of the data sources which was actually chosen for

experiments (section 5.3) is discussed. In this chapter there is also a discussion on how the

target words - semantic neologisms were chosen for experiments (section 5.5).

5.1 Downloadable datasets

There are a number of time-stamped resources available for research purposes. In this section

there is a discussion on such resources that are downloadable and may be useful for the novel

sense detection task and during the discussion of each such resource, some information is

given on the choices that were made concerning the resource. The two most relevant criteria

influencing suitability for the experiments are:

1. length of time-line

2. amount of data per year for a given target.

Table 5.1 provides a corpora list and the first 5 in the list are downloadable resources and the

rest are ‘web-accessible’ resources. Column ‘time-line’ in the table refers to the number of

years of data the corpus holds, column ‘Free’ refers to whether the corpus is web accessible,

freely downloadable or not, column ‘size’ provides the size of the corpus, column ‘Target

occurrences’ provides the count of the target occurrences in the corresponding corpus and

column ‘Relevant work’ provides the references of works that use the resource.
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Name Time-line Free Size Target occurrences Relevant work

TIPSTER 1988-1992 no 4.48×106

words
NA

AQUAINT 1996-2000 no 3.75×106

words
NA

NYT 1987-2007 no 1.8×106

articles
NA Rohrdantz et al. [2011]

EUROPARL 1997-2011 yes 5.3×106

words

smashed it: 0
bricked: 1
crawled: 2
mouse: 87
surf: 24
site: 462

Google
5-gram

1600-2008 yes
3.61×1011

words

mouse 2008:51k
mouse 2000-09:529k
surf 2008: 7k
surf 2000-09: 49k
bricked 2008:332
bricked:2000-09:1.3k

Wijaya and Yeniterzi [2011]
Mitra et al. [2014, 2015]
Kulkarni et al. [2014]
Gulordava and Baroni [2011]

COCA 1990-2015 web
5.2×108

words

mouse 2008: 241
mouse 2000-09: 3k
bricked 2008: 4
bricked 2000-09: 39
crawled 2008: 135
crawled 2000-09: 1196

COHA 1810-2009 web
4×108

words

mouse 2008: 6
mouse:2000-09: 601
bricked 2008: 0
bricked 2000-09: 11
crawled 2008: 15
crawled 2000-09: 397

Web Corp
Live

see text NA see text

Bricked 2008: 0
Bricked 2000-09:542
mouse 2008: 0
mouse 2000-09: 1810

Web Corp
Diachronic

2000-2010 web 1.3×106

words

bricked 2008: 1
Bricked 2000-09: 19
mouse 2008: 288
mouse 2000-09: 2872

Web corp
Synchronic

2000-2010 web 1.27×106

words

bricked 2008:0
bricked 2000-09: 60
mouse 2008: 2173
mouse 2000-09: 10417

Table 5.1 – A list of corpora explored for the Diachronic analysis with further details related to the
corpora are provided here – see text for explanation on further details.

The matter of how targets were chosen – known semantic neologisms – is discussed in

section 5.5. However to continue with the discussion of the data-sets in some context, it is

necessary to mention a few targets. The word mouse has a ‘pointing device’ sense, which it has

not always had. The OED gives a first citation of 1965, and according to Wikipedia [Wikipedia,

2016] this particular computer accessory really took off in the 1980s. The words surf and crawl

have senses relating to ‘moving through a network of sites making up the WWW (by user and

search-engine respectively)’ which date from the arrival of that technology, some time after
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1995. The investigation of these targets has some implications for what will be relevant time-

line. The word bricked has a ‘render inert’ sense and the phrase smashed it has a ‘was excellent’

sense, both of which seem to be quite recent, perhaps in the last 10 years.

Now, continuing with the discussion on data sources, consider the first data source in Ta-

ble 5.1 TIPSTER[Harman and Liberman, 1993]. It is a downloadable dataset distributed by

LDC for TREC (Text Research Collection) related workshops. It contains data from varied

sources such as Associated Press, wall street journal, the Federal register and US Patents. It

approximately has 448 million words with the data between 1988 – 1992. This time period is

too short to be considered for this work.

Another similar corpus we had from LDC1 is AQUAINT corpus, that has data from various

Associated Press, New York Times (NYT) and Xinhua news services between years 1998 –

2000, 1998 – 2000 and 1996 – 2000 respectively. Again this gives a short overall time line.

Rohrdantz et al. [2011] has used a ‘complete’ NYT corpus with newspaper articles that spans

between 1987 and 2007 for their work on novel sense detection. It has the advantage of accurate

time-stamps as every article has a publication date attached to it. But just a small chunk of the

NYT corpus was found as a part of the AQUAINT corpus, so it was opted for this work.

Another possible time-stamped corpus is EUROPARL2[Koehn, 2005] parallel corpus, which

is used mainly for training Machine Translation (MT) systems. The corpus contains European

parliament proceedings between 1997 and 2011. When searched for the words crawled,

mouse and surf, the number of occurrences (see Table 5.1) are rather small. The potential

targets bricked and smashed it do not occur at all.

Google N-gram corpus[Michel et al., 2011] is another downloadable dataset, containing

N-gram counts from over 5 million digitized books with 361 billion English words, with each

N-gram getting a per-year count, based on the year of publication of the book from which it

comes. The data covers a very long time-line, from early 17th century till 2008. The corpus

has data from uni-grams to 5-grams and out of all these, 5-gram version provides the greatest

amount of context words for any given target. For the target mouse there is a great deal of data

over a long time for the year 1975 there are 9241 occurrences, for the years 1985, 2008 there

are 18395 and 51448 occurrences. The per year occurrence of the words seem to be reasonable

enough to consider them for the current work and it was adopted as data source. A number of

further details of this corpus are discussed in section 5.3.

5.2 Web-accessible datasets

In the previous section 5.1, some downloadable time-stamped data sources were discussed.

There are also further sources that may be accessed via the web but are not downloadable in

1LDC refers to Linguistic Data Consortium which holds data from various sources and distributed free for
some LDC conducted workshops and in other times for some fee. See https://www.ldc.upenn.edu – Last
accessed on July 23, 2016

2EUROPARL refers to European Parliament Proceedings Parallel Corpus 1996-2011. This corpus is available
from http://www.statmt.org/europarl/ – Last accessed on July 23, 2016

https://www.ldc.upenn.edu
http://www.statmt.org/europarl/
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their entirety. The second half of table 5.1 provides a list of web-accessible corpora with their

details. Particular targets that are semantic neologisms were chosen on such web-accessible

sources to see if they could provide the kind of data needed.

Dr. Mark Davies of Brigham Young University has put together a set of widely used cor-

pora and are made web-accessible. One such web-accessible corpus is Corpus of Contem-

porary English (COCA)3 of size 520 million words coming from Contemporary American

English. The range of times covered is 1990 – 2015. Another web-accessible corpus available

is Corpus of Historical American English (COHA)4 with 400 million words covering the years

1810 – 2009. For COCA for some of the targets already mentioned this seems an appropriate

time-line – though not for mouse. For bricked, an apparently more recent neologism, the time-

line seems appropriate but the returned amount of data is small for this word. For crawled the

time-line is appropriate and the per-year amounts are possibly large enough. For COHA for the

above-mentioned targets the per year amounts are smaller than COCA. The time-line is appro-

priate for mouse but the data amounts are rather small. For both COCA and COHA, a major

set-back in using these two corpora is that although search outcomes are visible in the browser,

the outcomes of searches are not downloadable as such. For a licensing fee then entirety of the

corpus can be downloaded.

WebCorp5 Live [Renouf et al., 2007] is an online service aiming to facilitate use of the

World Wide Web as a corpus. Remarks below concern when it was considered as an option –

Aug 2015. Some of its functionalities may have changed since then. When a word or phrase

is entered, it forwards the search to a commercial search engine, then from the URLs in the

returned hit lists it downloads linked-to documents and processes these further to make a con-

cordance style output. The search-engines called on impose a max size of hit list eg. for Google

this is just 64. WebCorp’s processing includes dating result pages and there is a possibility to

filter the results by date but this does not set a date range for searching. For example searching

for ‘bricked’ returns 562 concordance lines from 64 different pages, but if the date is then set

to 2008, no results remain. This is because the original hit list returned via Google contained

nothing as old as 2008. So while WebCorp Live may have several features useful for enabling

corpus linguistics via the Web, it does not really have the features to enable the construction of

a large diachronic data set for a given word or phrase.

In addition to WebCorp Live, they also have a so-called WebCorp-Linguistic Search En-

gine, which has the ability to search through different corpora such as ‘Synchronic English

Web Corpus’ and ‘Diachronic English Web Corpus’. ‘Synchronic English Web Corpus’ is

made from web-extracted texts with 467 million words covering data between 2000 – 2010

and ‘Diachronic English Web Corpus’ is a 130 million word corpus covering data between Jan

2000 – Dec 2010 with each month having 1 million words. For several of the targets (such

3COCA corpus is available online from http://corpus.byu.edu/coca/ – Last accessed on July 23,
2016

4COCA corpus is available online from http://corpus.byu.edu/coha/ – Last accessed on July 24,
2016

5accessible from http://www.webcorp.org.uk/

http://corpus.byu.edu/coca/
http://corpus.byu.edu/coha/
http://www.webcorp.org.uk/


5.3. GOOGLE 5-GRAM 73

as mouse) the time line is not appropriate because of its limitations. For the recent sense of

bricked the time line is appropriate but as can be seen from the table the number of occurrence

is very small.

Lexis-Nexis is a large web-accessible database with data from legal, news and business

sources. These are downloadable, but access to this database is not free of cost. A custom date

based search is available to look for data from particular dates of interest, which allows us to

download data belonging to a particular year. Although data from a wide time span is available

for online searches, only up to 3000 results of them were available for user download at one

time and not all results were made available exclusively for downloads. Further the slowness

in rendering the results made it further difficult to download the data from this database.

5.3 Google 5-gram

This is a data set released by Google6 giving per-year counts7 of 5-grams in their digitized

books holdings. From the entire 5-gram data-set it is possible to pull for a given target word

T , a corpus of time-stamped 5-grams (with counts) containing T . Compared to the different

corpora discussed in the previous section, Google 5-gram is far larger, covers more times, and

should have more accurate time-stamps as they are dependent on the publishing date of a book

in getting the time-stamps. One potential disadvantage is they never have a context of more

than 4 words.

5-gram count
diligence and patience the mouse 2
and patience the mouse ate 2
patience the mouse ate in 2
the mouse ate in two 2
mouse ate in two the 2

Table 5.2 – Sample 5-grams for target mouse from the year 1821

To explain further about Google 5-gram dataset, it is necessary to emphasize that it is not

really a corpus rather a (per-year) frequency table for 5-gram types. It is a data-set giving time-

stamped counts on 5-gram types arising by sliding a window over the original texts, a window

in which a succession of token sequences appear; basically the window contents will contribute

to a count if the tokens do not span certain boundaries such as sentence or paragraph endings.

Consider the data provided in table 5.2 for the target mouse from 18218 – these are 5 counts

for 5 types. These counts could come from 10 separate 1821 tokens of mouse, or from just 2

occurrences of9 diligence and patience the mouse ate in two the. In general a token of T could

have contributed to the counts of up to 5 different 5-grams. However for this work, the count

6There are also 1,2,3 and 4-gram data sets.
7They excludes 5-grams with total count < 40.
8They are not consecutive in this way in the original data.
9By doing date specific search at http://books.google.com it can be verified that the latter is true

http://books.google.com
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n for a 5-gram is treated as if the n occurrences of the target contribute to no other 5-grams

for that target, which amounts to treating the 5-grams as if they were independent miniature

documents. There is no real practicable alternative to this.

The Google n-gram books dataset has been used for sense change detection in various

works Kulkarni et al. [2014], Mitra et al. [2014, 2015], Wijaya and Yeniterzi [2011] for exper-

iments.

In addition to all the feel-good factors about the Google n-gram dataset, there are also a few

criticisms that may be noteworthy here: (i) the n-gram corpus has been composed by digitizing

the books using a OCR, so there are chances of errors. However Google has claimed in their

latest release10 that, “Books with low OCR quality and serials were excluded” – here low OCR

quality refers to 80% accuracy [Michel et al., 2011]. (ii) According to Michel et al. [2011], the

publishing date of the books has some errors with the likelihood of error in a randomly sampled

book from the corpus between 1800 – 2000 stands less than 6.2%. Such error analysis seems

left untested for the period 2001 – 2008.

Even with these limitations, considering the volume of data available for analysis such

errors are intuitively not expected to have a larger impact in the experiment outcomes.

5.4 Comparing eras

Rather than a real diachronic corpus, some works are based on texts representing just two eras.

Few such examples are the works of Cook et al. [2013, 2014], Lau et al. [2012]. They have

used British National Corpus (BNC) [Clear, 1993] corpus and UKWAC[Ferraresi et al., 2008]

corpus for this work. Instead of considering the occurrences of target from different times (say

a number of years), they have considered all the occurrences of a target from BNC corpus to

be representing data from late 20th century. To compare with, they have used UKWAC corpus

having data from 2008. In their work, they have just compared two times ie., 2008 to the later

20th century. As they have considered BNC corpus for comparing two era, the possibility of

BNC was also considered for this work. BNC is a 100 million word corpus widely used for

various text processing utilities with data between 1960 and 1993, while the large majority of

text spans between 1985 and 1993. Given a very short time-span 1985 – 1993, the possibility

of the usage of this corpus for our work is ruled out. However for consistency reasons, the

number of occurrences for the words mouse and bricked were fetched, which produced 1728

and 32 occurrences of the words in the corpus. This kind of corpus may be ideal for comparing

text from two different eras, as the majority of the data are from a very short time-span.

5.5 Choosing targets

To test the proposal we require words which are genuine semantic neologisms . As already

noted, there is no gold-standard reference data-set to turn to. The starting point for the targets

10Their latest release happened in 2012 and we have considered this version of data for all our work.
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chosen was native speaker intuition, and to some extent, some of the prior work.

For any such potential target with some supposed novel sense it was checked that the OED

records this sense, and has a first citation date for it. It is also necessary that the novel sense be

present in the 5-gram data. Although the Google 5-gram data is very large, it is not absolutely

certain to contain examples of every sense of every word. For example, a 5-gram sub-corpus

for the potential target crawled was extracted, containing 214048 5-grams between 1970 –

2008. Some intuitively associated words for its newer sense include web, internet, page, url,

index, indexing, but far from having a point in time where they have increasing frequency in

the sub-corpus, these do not occur even once. Similarly a sub-corpus for the potential target

bricked contained 6096 5-grams between 1970 – 2008. However when words are taken which

you might intuitively expect in the context of its newer ‘render device inert’ sense, such as

mobile, phone, OS, android, apple, software, they did not occur in its 5-gram sub-corpus. For

such items it seems the novel sense is not present in the 5-gram data, and it is not possible to

establish a tracks-based date against which to compare any inferred sense-emergence date.

It is quite a time-consuming process to extract a sub-corpus for a particular target from

the entire 5-gram corpus. To try to get a quick preliminary impression on the presence or

absence of particular novel sense we made some use of the Google n-gram viewer, which

offers possibilities to get a preliminary impression of what particular tracks-plots would be

produced on the sub-corpus. For example, plots in figure 5.1 shows information obtained via

the online N-gram viewer with respect to the targets mouse and surfing. First, let us consider
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Figure 5.1 – Plots of words adjacent to mouse and surf are based on values from ratio queries given
to the Google n-gram viewer API – values are normalized by their means over time. The black line
in each case concerns adjacent words intuitively particularly associated with an emerging sense,
the red lines concerns words associated with a long established sense.

the target mouse provided in the left hand plot of figure 5.1: for this, the intuitively associated

word in the ‘pointing device’ sense is click. Online the Google n-gram viewer can be given the

query ((mouse click) / mouse), which looks for 2-gram counts of mouse click and is divided by

the count of mouse, which is indicative of the probability of the word click immediately next

to mouse. The results for such a query can be downloaded using the Google N-gram viewer
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API11. The plot in figure 5.1 is based on such downloaded numbers and the additional step

has been taken of dividing the values by their mean (over the time-span) – the same applies to

other plots shown earlier based on the Google N-gram viewer API. This division by the mean

is to place different queries on a comparable scale. From the plot one can observe that the

word click has an emerging trend (where the word click occurring with the target has close

to zero occurrence during the initial period and takes off later), which provides a suggestion

that the dataset has the emerging sense for the target mouse. To provide a further comparison

with the emerging trend the intuitively associated words (pet, small, trap) with the other sense

is also plotted. Similar to this, consider another target surfing provided in the right hand plot

of figure 5.1: for this the internet, the web – intuitively associated words in the novel usage

of ‘activity of moving from site to site’ are searched for by the Google N-gram viewer for the

query ((surfing the Internet + surfing the Web)/surfing) and the combined relative counts for the

words the Internet + the Web are plotted. This shows the emerging trend for the novel sense,

which confirms the reasoning that the word surfing is likely to occur in the 5-gram corpus.

Such plots were used to anticipate the behavior in a 5-gram sub-corpus. It is important

to note that the plots created by accessing the Google N-gram viewer use ratios where the

denominator is a count for some 1-gram x, and the numerator is based on counts for extending

2-grams and 3-grams x′, and so do not reproduce exactly the conditional probabilities that will

be obtained from a target-specific 5-gram sub-corpus12.

Target New sense OED
mouse computer pointing device 1965
gay homosexual person 1941
strike industrial action 1904
bit basic unit of information 1958
compile transform to machine code 1965
paste duplicate text in computer edit 1981
surf exploring internet 1992
boot computer start up 1981
rock genre of music 1960
stoned under drug influence 1965
hip up-to-date; smart, stylish 1904
export to transmit data out of computer 1982
mirror to copy data on to a different server 1993
domain A subset of locations on the network 1982
high under the influence of drugs 1932

Table 5.3 – The table provides the information for targets that are neologisms

In the end, the targets13 mouse, gay, strike, bit, compile, paste, surf, boot, rock, stoned,

hip, export, mirror, domain, high were chosen for experiments using the diachronic model in
11The API is available from https://github.com/econpy/google-ngrams
12Besides the difference in length of n-gram and the fact the 5-gram conditional probabilities are not position

specific, there is also the fact that for each length of n-gram Google applies a frequency threshold of 40 to the
released n-gram corpus.

13Explicit dictionary definitions and citation informaton from the online Oxford English Dictionary (OED) for
the chosen targets are provided in the appendix A.1

https://github.com/econpy/google-ngrams
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identifying a novel sense associated with them from Google 5-gram corpus. This is provided

in table 5.3.

In some cases, targets which were originally prompted by intuition coincide with targets

considered in other work: [Wijaya and Yeniterzi, 2011] also considered gay and mouse. Some

were prompted by the works [Cook et al., 2013, 2014, Lau et al., 2012]. They considered

domain, export, mirror, poster, worm, visit, feed, site, platform. Of these, based on preliminary

indicators via the n-gram viewer we adopted also domain, export, mirror. In Mitra et al. [2014,

2015] a number words are discussed which the system suggested to be semantic neologisms

and which, according to the authors, truly are. The assessment of some of these as truly ‘sense-

births’, relative to the dates discussed, seems wrong, going by the OED (eg. hooker, amp, bum,

sissy, thug, dude). We did not adopt as targets any of their sense-birth words14

14For a number of others, although their claimed novelty was consistent with the OED, our above-mentioned
preliminary investigations via the n-gram viewer suggested the absence of the proposed novel sense in the n-gram
data (eg. giants, donation, partition, passwords)
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Chapter 6

Neologism Experiments - Google
5-grams

Semantic neologisms are the existing words with some sense that takes a new sense at some

time. The examples for this are discussed in chapter 1. As discussed in that chapter, it is

not easy to find an emerging sense from a large data set containing occurrences of any given

semantic neologism target with time-annotations. For this, a diachronic model was introduced

in chapter 3 and the parameter updates are also derived for EM and Gibbs sampling parameter

estimation schemes, that can supposedly infer the emerging sense from raw text.

For this model, experiments using EM and Gibbs sampling algorithms are conducted based

on Google 5-gram datasets (section 5.3) for different targets to find the relevance of the di-

achronic model in finding a neologistic sense. These experiment outcomes are reported in this

chapter. In section 6.2 of this chapter, a set of experiments are formulated to test the model

with manipulated datasets and this is called as Pseudo-neologism tests. This work is carried

out with motivation from the pseudo-word tests conducted by Schütze [1998] for unsupervised

‘word sense discrimination’ task. Then, EM and Gibbs sampling experiments for genuine

neologism targets are reported in section 6.3, where further analysis based on the experiment

outcomes are also performed. Then in section 6.4, following the methodology of [Cook et al.,

2013, 2014, Lau et al., 2012] similar experiments are conducted for non-neologism targets to

prove that the outcomes of ‘genuine’ neologisms are not accidental.

Also, following Cook et al. [2013, 2014], Lau et al. [2012] methodology, a new method is

devised to discriminate neologism targets from the the non-neologism ones based on a so-called

‘novelty-scores’ (section 6.5). Further in section 6.6, the EM and Gibbs sampling experiments

for the ‘genuine’ neologism targets that did not produce the expected outcomes are also re-

ported.

In addition to the initial model tests (section 6.2) conducted, few other tests were also

conducted: (i) to understand the impact of data on the estimation procedures, “Ablation” tests

were conducted and those are reported in section 6.7.1 and (ii) in an attempt to infer the number

of senses required to find a neologistic sense, “merge tests” were conducted and its outcomes
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are reported in section 6.7.2.

6.1 Generating sub-corpus

Google 5-gram corpus1 is a large collection2 of per year counts of 5-grams organized in alpha-

betical order3. Therefore, it is not an easy task to pull all the occurrences of a target T from the

complete collection during an experiment. So a sub-corpus was made for each T by collecting

all the occurrences of T coming from different years – this was done using a script, which

opened each zip file from the complete dataset, looked up for the occurrence of T in each line

of the file and based on year of occurrence, the 5-gram gets into a separate file corresponding

to the year; this way the sub-corpus had all the occurrences of T from all the years. As a single

process, the extraction process takes approximately 36 hours for a target.

6.2 pseudo-neologism model test

The ‘pseudo-word’ technique was introduced by Schütze [1998] as a way to test un-supervised

word-sense discrimination. It can be given a diachronic twist to furnish what might be called

‘pseudo-neologisms’ in the following way. Consider two unambiguous words T1 and T2 with

T1 in use throughout the time period, but T2 emerging at time Te in the period. If the 5-grams

for T1 and T2 are then all treated as examples of the fake word ‘T1−T2’ this functions as an

artificial semantic neologism, manifesting T2’s sense only from te onwards, and furthermore

for all t > te, T2’s sense is present to the exact extent to which the T2 5-grams contribute to the

merged set of T1 and T2 5-grams for year t.

This technique is used, for the time-period 1850–2008, choosing ostensible for T1, and su-

permarket, genocide, byte as possibilities for T2. For each target, a separate dataset is extracted

with which datasets T1 and T2 are combined considering them to be one T1−T2 dataset. The

dataset sizes for each target with their usage information is provided in table 6.1 – the ‘Lines’

column provides information on the number of data items (5-grams) associated with the target,

‘OED’ column provides the first citation date for the target from the online Oxford English Dic-

tionary, while the next two columns are the emergence date information for the EM and Gibbs

sampling algorithm outcomes. These dates are obtained by the emergence time detection al-

gorithm discussed in section 4.1.4. Furthermore the proportion of T2 n-grams relative to all

n-grams (either T1 or T2) in a given year gives gold-standard for the created pseudo-neologism.

The ‘gold standard’ column in table 6.1 gives the emergence time obtained from this sequence.

In this section, the EM and Gibbs sampling parameter outcomes for the said pseudo-

neologisms are discussed – for all the EM and Gibbs sampling experiments in this section,

the parameter distributions were assigned as discussed in sections 3.3.4 and 3.4.3 respectively.

1We use version 2 of the corpus generated in July 2012
2The whole collection of 5-grams occupies approximately 235 Gigabytes of storage in a compression format.
35-grams starting with different letters are compressed together in separate files
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Target Lines usage OED EM Date GS Date gold standard
byte 119k unit of information 1961 1965 1965 1965

genocide 94k mass killing 1944 1946 1947 1946
supermarket 231k a large self-service shop 1931 1949 1949 1949
ostensible 118k appearing to be true NA NA NA NA

Table 6.1 – Words used to generate pseudo-neologisms

For EM, the parameter ‘wc min’ (recall section 3.3.3) was set to 0 and for the Gibbs sampling

experiments the hyper-parameters γγγπ and γγγθ were set to 1 – these settings assume an uniform

(un-informative) prior over the parameters.

6.2.1 byte-ostensible

The byte-ostensible dataset is formed by combining data from byte and ostensible datasets

and considered them to be one single dataset. The EM and Gibbs sampling experiments were

conducted on the byte-ostensible dataset between years 1850 and 2008, where the ostensible

dataset had data between 1850 - 2008, while byte had data in the period 1933 - 2008. The OED

date for byte is 1961 (as can be seen from Table 6.1), but the dataset had data for byte from

the year 1933 – on manually looking into the dataset, it was identified that there were small

amount of data in the years before 1960, which may be accounted for wrong time annotation

in the dataset. However all the data from the datasets were considered for the experiments.

The plot in figure 6.1 shows the inferred and empirical outcomes for byte-ostensible pseudo-

neologism running with a sense setting K = 2, asking for the algorithms to produce two sense

parameter outcomes. Here K is set to 2 as it is known that T1 (byte) and T2 (ostensible) are un-

ambiguous and so has only one sense associated with each target. Both EM and Gibbs sampling

inference procedures learns values for the parameter distributions πππ and θθθ ; the sense parame-

ter parameter πππ has values for every time t in each sense k where ∑k πt [k] = 1 and; the word

parameter θθθ has values for every word w from vocabulary V in sense k where ∑
V
w θk[w] = 1.

The first two plots are made from EM and Gibbs sampling algorithm’s inferred πππ sense

parameter outcomes – for each k, the succession of πt [k] values. EM, giving a point estimate,

these values are produced by the algorithm, while the Gibbs sampling algorithm produces a

series of Gibbs samples, from which the mean of the samples are considered for πππ and the

plots are made. In the plots, the red line represents ‘sense 0’ made from inferred πππ[k = 0]

and the blue line made from inferred πππ[k = 1] labeled as ‘sense 1’. The third plot show the

‘gold-standard’ sense probabilities, i.e., the proportions of byte and ostensible in each year.

The plots made out of the inference outcomes are very alike and both the inference pro-

cedures infers ‘sense 0’ to have an apparent neologistic pattern, with the inflection seen in

year 1965 – the emergence dating information are further shown as ‘EM-Date’ and ‘GS-Date’

in Table 6.1. These inferred dates are close to that apparent from the ‘gold-standard’ plots

(and consistent with the OED citation date). It is expected from the inferred estimates that

the ‘red’ line in the plot representing neologistic pattern is associated with the ‘byte’ sense,

which can further be confirmed with the gist words – table 6.2, provides a list of top 30 gist
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Figure 6.1 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for byte-ostensible pseudo-neologism, and the third plot shows the
known byte and ostensible proportions

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 0) byte: -, a, (, [, ], ), 8, order, 1, bit, sin-
gle, bits, 4, 2, one, word, END , ., time, A, two, byte,
called, eight, by, character, array, short, low, field

gist(sense 0) byte: -, a, order, bits, significant, bit, 8,
1, word, single, ., END , 2, one, 4, time, A, low, ), at,
most, two, by, byte, least, called, eight, high, character,
field

gist(sense 1): purpose, reason, was, The, object, first,
for, the, second, cause, no, its, his, subject, of, last,
their, this, START , means, that, with, which, next,
ground, significant, least, motive, authority, aim

gist(sense 1): purpose, reason, was, [, ], object, The,
for, cause, no, his, its, subject, second, their, the,
START , first, means, this, public, short, b, of, last,

int, that, which, ground, motive

Table 6.2 – Top 30 gist words for byte-ostensible pseudo-word

words obtained from the word parameter distributions θθθ k for ‘sense 0’ and ‘sense 1’ and they

correspond to byte and ostensible related senses respectively. The words such as 8, bit, order

and significant are representative of the word byte – ‘a unit of information’ sense. These words

are consistently seen from both the EM and Gibbs sampler outcomes except for a few changes

in the word order in the top 30 ‘gist’ words as seen from table 6.2. Additionally, it can also be

observed that the top 30 ‘gist’ words for ‘sense 1’ is consistent with the ostensible sense.

6.2.2 genocide-ostensible

Figure 6.2 shows the EM and Gibbs sampling inferred and empirical outcomes for genocide-

ostensible pseudo-neologism running with sense setting K = 2. For the Gibbs sampling out-

comes, mean of the Gibbs samples are plotted. From the inferred outcomes, ‘sense 0’ asso-

ciated with genocide sense is identified to be a neologism as expected, further the ‘EM-Date’

and ‘GS-Date’ are very close to the OED citation date for genocide – the dating information

are provided in table 6.1.

The top 30 ‘gist’ words for ‘sense 0’ and ‘sense 1’ from EM and Gibbs sampling outcomes

are provided in table 6.3. The ‘gist’ words such as crime, war, humanity and commit are

representative of the word genocide – ‘mass killing’ sense, can be seen consistently in both

EM and Gibbs sampling top 30 ‘gist’ words list. Also, the ‘gist’ words associated with ‘sense

1’ are consistent with the ostensible word sense and this also confirms with the ‘gist’ words

from byte-ostensible outcomes.



6.2. PSEUDO-NEOLOGISM MODEL TEST 83

1850 1900 1950 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Year

S
e
n
s
e
 P

ro
p

sense 0

sense 1

1850 1900 1950 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Year

S
e
n
s
e
 P

ro
p

sense 0

sense 1

1850 1900 1950 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Year

P
ro

b
s

genocide

ostensible

Figure 6.2 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred πt [k]
sense parameter outcomes for genocide-ostensible pseudo-neologism, and the third plot shows the
known genocide and ostensible proportions

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 0) genocide: crimes, ”, Rwanda, against,
END , ., commit, humanity, and, war, ’, 1994, in,

Rwandan, Nazi, cultural, cleansing, Armenian, ethnic,
crime, acts, term, as, form, word, victims, slavery, pol-
icy, ;, ,,

gist(sense 0) genocide: crimes, against, Rwanda, ”,
END , ., commit, humanity, in, war, and, ’, 1994,

Nazi, Rwandan, cultural, Armenian, cleansing, ethnic,
Jews, term, during, crime, word, victims, slavery, as,
policy, acts, form

gist(sense 1): purpose, reason, The, object, START ,
was, cause, no, for, his, means, subject, its, is, this,
their, which, with, any, ground, that, aim, motive, than,
authority, whose, without, Convention, has, His

gist(sense 1): purpose, reason, The, object, START ,
was, cause, no, for, with, any, means, his, that, is, sub-
ject, its, this, which, their, ground, aim, motive, author-
ity, than, whose, without, Convention, has, His

Table 6.3 – Top 30 gist words for genocide-ostensible pseudo-word

6.2.3 supermarket-ostensible

Figure 6.3 shows the inferred and empirical outcomes for supermarket-ostensible pseudo-

neologism running with sense setting K = 2. As can be seen on the plots, the inferred outcomes

are analogous with the empirical estimate. In the figure, it can be seen that the neologistic sense

in the inferred outcomes are colored blue while in the empirical plot, it is colored red – this is

because the inference procedure decides assigning the senses, however it gets clear when the

‘gist’ words are analyzed from the inferred outcomes.
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Figure 6.3 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred πt [k]
sense parameter outcomes for supermarket-ostensible pseudo-neologism, and the third plot shows
the known supermarket and ostensible proportions
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gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 0): purpose, The, reason, object, was,
START , for, cause, no, that, its, subject, his, of,

which, this, is, means, their, an, ground, with, aim, mo-
tive, whose, His, without, Its, well, reasons

gist(sense 0): purpose, The, reason, object, was,
START , for, cause, no, that, its, his, subject, this,

which, of, their, is, means, with, ground, an, aim, mo-
tive, whose, His, without, Its, reasons, head

gist(sense 1) supermarket: at, END , a, ., local, in,
go, your, or, from, checkout, chain, shelves, line, you,
store, buy, shopping, to, parking, section, lot, ?, shelf,
went, large, I, out, chains, department

gist(sense 1) supermarket: at, a, ., local, END , in,
go, your, chain, checkout, shelves, from, or, line, you,
store, buy, shopping, -, parking, to, section, lot, ?,
shelf, went, chains, large, I, out

Table 6.4 – Top 30 gist words for supermarket-ostensible pseudo-word

The ‘gist’ words of ‘sense 1’ such as buy, checkout, chain and shelves are consistent with

the supermarket sense, similarly the ‘gist’ words with respect to ostensible sense are consistent

with the earlier experiment outcomes.

Thus on these pseudo-neologisms, the proposed algorithm has been successful, identifying

an emerging ‘sense’ in an unsupervised fashion. Moving on from this first test, the next section

considers outcomes on authentic words. As a further note, for all the experiments mentioned

in this section the value for K has been set to 2. This is because we know the number of

senses involved for the ‘pseudo-word’ targets, but for the experiments that will be encountered

further in this chapter we do not know the actual number of senses associated with the target

words. Therefore, the required value for K cannot be determined before the experiments were

conducted and may seem arbitrary.

6.3 Neologism targets

The ‘pseudo-neologism’ experiments provided evidence that the ‘diachronic model’ can detect

sense emergence from artificial ‘pseud-neologism’ data. Experiments on genuine targets are

presented in this section. The targets4 mouse, surf, gay, bit, boot, compile, strike, rock, stoned

are considered for the actual neologism experiments – these are the words which, relative to

particular time periods, are known to exhibit sense emergence.

For each target, EM-inferred, Gibbs sampler inferred time-lines of πππ t [k] values for each k

will be plotted. The time-lines of the πππ t [k] values give a visual impression of whether a sense

emergence has been detected. The emergence time detection algorithm discussed in section

4.1.4 is applied to the time-lines of the πππ t [k] values and for any time-line which the algorithm

reports as showing an emergence, the detected time is reported.

Also for each target a ‘tracks’ plots is made for the anticipated novel sense – the co-

occurring words used are discussed when the outcomes for each target are presented below.

From this a tracks-based emergence date is calculated following the procedure described in

section 4.1.4.

After a comparison of the emergence times based on EM and GS inferred πππ t [k] time-lines

with the tracks-based emergence date, there is further analysis of the inferred word-given-sense

probabilities by considering ‘gist’ words and sense examples, as described in section 4.2.
4 Explicit dictionary definitions and citation informaton from the online Oxford English Dictionary (OED) for

the chosen targets are provided in the appendix A.1
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Target Years Lines Min Occs Max Occs New sense Vocab size
mouse 1950-2008 910k 1263k 6318k computer pointing device 5109
gay 1900-2008 1253k 1253k 5573k homosexual person 6686
strike 1800-2008 5052k 3462k 17311k industrial action 9088
bit 1920-2008 7393k 7407k 37037k basic unit of information 13808
compile 1950-2008 214k 174k 873k transform to machine code 1414
paste 1950-2008 318k 272k 1360k duplicate text in computer edit 1965
surf 1950-2008 182k 137k 687k exploring internet 1657
boot 1920-2008 1285k 907k 4538k computer start up 5312
rock 1920-2008 4136k 2910k 14553k genre of music 10163
stoned 1930-2008 12k 5k 28k under drug influence 251

Table 6.5 – Google 5 gram dataset - the table provides the information for targets that are neolo-
gisms

Target
Dc

0
(OED)

Di
0

LDCOE/COE
C0

(Tracks)
GS-
Date GS < 10%

EM-
Date EM < 10%

mouse 1965 1987/1990 1982 1982 yes 1982 yes
gay 1941 1978/1976 1969 1969 yes 1970 yes
strike 1810 1978/1911 1899 1901 yes 1904 yes
bit 1948 1978/1976 1966 1958 yes 1958 yes
compile 1952 1978/1976 1972 1965 yes 1965 yes
paste 1975 1995/2004 1982 1981 yes 1981 yes
surf 1992 1995/2004 1993 1992 yes 1992 yes
boot 1980 1987/2004 1982 1980 yes 1981 yes
rock 1956 1987/1990 1967 1960 yes 1960 yes
stoned 1952 1978/1976 1959 1960 yes 1965 yes

Table 6.6 – Dc
0(OED) gives the date of first citation in the OED, under Di

0 LDCOE (resp. COE)
gives the date of first dictionary inclusion in LDOCE (resp. COE), C0(Tracks) gives a tracks-based
corpus-emergence data in the relevant Google 5 gram sub-corpus, GS-Date and EM-Date give
sense emergence dates derived from πππ t parameters inferred by GS and EM, and GS < 10% and
EM < 10% indicate whether these agree with 10% of the time-span with C0(Tracks)

Table 6.5 gives some size information for sub-corpora for the targets. The ‘Years’ column

provides the year span considered for the EM and Gibbs sampling experiments, ‘Lines’ column

is the number of data items (5-grams) with target T and ‘New sense’ column indicates the

expected neologistic sense associated with T . The ‘Max occs’ column is the maximum number

of tokens of T these lines could represent and is the sum of all of T ’s 5-gram frequencies, while

‘Min occs’ is the minimum number of tokens T these lines could represent (= max/5).

Table 6.6 gives some dating information. For each target Dc
0(OED) gives the date of first

citation in the OED. Following the discussion in chapter 4 this is expected to be a lower bound

to the true corpus emergence date. Di
0 gives dates of first inclusion of the novel sense inclusion

in a sequence of dictionary editions; the LDOCE numbers are from 4 editions of the Longman

Dictionary of Contemporary English (1978,1987,1995,2005), the COE are from 4 editions of

the Concise Oxford Dictionary (1911,1976,1990,2004). Following the discussion in chapter 4

this is expected to be an upper bound to the true corpus emergence date. C0(Tracks) gives

the tracks-based emergence date for the target in the relevant Google 5-gram corpus and this
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C0(Tracks) will be treated as a reference with which to compare the emergence date that is

based on the inferred parameters via EM and GS. One thing to note from Table 6.6 is that the

proposed ‘tracks’-based dating by which to identify the corpus emerge date, C0(Tracks), leads

to the expected ordering Dc
0 < C0(Tracks) < Di

0.

In applying EM and Gibbs sampling algorithms to the 5-gram data each time-stamped 5-

gram for T is treated as if it’s count n representing n unique tokens of T . When a single token

of T does contribute to 5 different 5-grams then the words closer to T will play a greater role

in determining the overall apparent data probability than words further way — a word at T−1

will appear in 4 of the 5-grams, whilst a word at T−4 will appear in one of the 5-grams. Thus

one thing that the experiments address is whether this simple way of using the 5 gram data is

undermined by this or not.

The number of senses, K, is an input parameter to the EM and GS algorithms. It is not a

feature of these algorithms to determine any kind of optimal value for this K. As each target is

considered in turn an initial experiment is done with a rather conservative K = 3 (for compar-

ison Frermann and Lapata [2016] adopt K = 10). In several cases a neologistic sense is then

detected. In cases where this does not occur, following the intuition that the neologistic sense

may be proportionately less prevalent than several other longer standing sense, we conduct fur-

ther experiments with K = 4 or K = 5. This issue of the number of senses is discussed a little

further in section 6.7.2.

6.3.1 mouse

In figure 6.4 the first 2 plots provide the inferred EM and Gibbs sampling estimates and also

‘tracks’ plot for the target mouse, with the algorithms run with 3 sense variants. In the EM

case for each sense k single solid line shows a sequence of estimated πt [k] for different t. In the

Gibbs case, for each k the solid line shows again shows a sequence of estimated πt [k] values,

although these are means over the Gibbs samples. Additionally, in the Gibbs case the dotted

lines around the solid line are the ‘min’ and ‘max’ of 90% HPD interval (section 3.4.6) obtained

from the inferred Gibbs samples. For both EM and Gibbs the blue line for the inferred πππ t [k = 1]

values shows a neologistic pattern: according to the EmergeTime algorithm of section 4.1.4

in both cases the emergence time is 1982. For this target and others, the ‘EM-Date’ column and

‘GS-Date’ columns of Table 6.6 gives this inflection point obtained by applying the emergence

time detection method (discussed in section 4.1.4) over the πππ t [k] values. Although for this

target both EM and Gibbs have found k = 1 to have a neologistic pattern (ie. the blue line in

both) this is really a coincidence. It is also visible in the plots that the other two senses have

switched.

The ‘tracks’ plot (see 4.1.3) shows tracks for click, button, pointer and drag – words that we

expect to be especially associated with the neologistic ‘computer peripheral’ sense of mouse. .

The emergence time based on this according to the procedure in section 4.1.4 is also 1982. For

this target and for others the columns ‘EM < 10%’ and ‘GS < 10%’ of table 6.6 compares this
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tracks-based date with the ‘EM-Date’ and ‘GS-Date’ respectively. For mouse the three dates

coincide. The table also gives ‘OED’ first citation date and in this case it is more than 15 years

earlier.
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Figure 6.4 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πππ[k] sense parameter outcomes for mouse experiment, and the third plot shows the probability
‘tracks’ for some words that are intuitively associated with the ‘computer peripheral’ sense of
mouse. Dating information – EM:1982, GS:1982, OED:1965, Tracks: 1982)

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 1) neologism: button, pointer, left, right, re-
lease, over, move, down, your, drag, you, hold, to, then,
on, when, Release, cursor, use, clicking, click, Move,
position, press, Click, while, changes, When, moving,
user

gist(sense 1) neologism: button, pointer, left, click,
right, you, over, release, your, down, move, to, drag,
START , is, hold, use, when, then, Release, or, cursor,

clicking, on, ,, Move, can, position, press, it

Table 6.7 – Top gist words for the neologism sense for target mouse ranked by comparing word
distributions to corpus Probabilities

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L L dragging the T pointer across R R L L dragging the T pointer across R R
L L drag the T to move R R L L drag the T to move R R
L L drag the T pointer across R R L L drag the T pointer across R R
L L roll the T to the R R sure to release the T R R R R
L L Roll your T over the R R L just release the T button R R R
L L rolls the T over the R R L L rolls the T pointer over R R
L L rolls the T pointer over R R L rollers inside the T . R R R
L L roll your T over any R R L just hover your T pointer R R R
L rollers inside the T . R R R L row with the T , R R R
L L roll the T pointer over R R succession without moving the T R R R R

Table 6.8 – Top neologism sense examples for the target mouse extracted from inferred EM and
Gibbs sampling estimates for sense 1

Table 6.7 provides the top 30 ‘gist’ words for the neologistic sense when ranked by com-

paring inferred θθθ k=1 distribution to Pcorp distribution (discussed in section 4.2.1). For nearly

all these ‘gist’ words (such as button, pointer, press, move and release) they seem very much

associated with the ‘pointing device’ usage of the target ‘mouse’. There are some (such as

when, your, then) where the association is not obvious but they also do not seem especially

associated other senses. For completeness the top 30 ‘gist’ words for the other senses are also

provided for reference in 6.29(a).
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Data items with P(S = SENSE 1|Y = 1990,www) Data items with P(S = SENSE 1|Y = 1970,www)

L L Drag the T down the R R 1 sleeve , threw the T R R R R 1
L L dragging the T over them R R 1 L L L L T with pale throat Burrows 1
L L drag the T pointer through R R 1 L L L L T promptly becomes absorbed in 1
L L Drag the T pointer to R R 1 L crushed and ridiculed T promptly R R R 1
L L Drag the T down and R R 1 pars distalis of the T R R R R 1
L L Drag the T to highlight R R 1 , crushed and ridiculed T R R R R 1
L L drag the T pointer down R R 1 L START While the T is R R R 1
L L drag the T to move R R 1 L L L ridiculed T promptly becomes absorbed R 1
L L drag the T pointer across R R 1 L L and ridiculed T promptly becomes R R 1
L L roll the T to the R R 1 With shrill command the T R R R R 1
row height with the T R R R R 1 our kites do a T R R R R 1
L row with the T , R R R 1 L shrill command the T controls R R R 1
L L roll the T on your R R 1 L to hold a T in R R R 1
L L roll the T over the R R 1 START Every time the T R R R R 1
sure to release the T R R R R 1 L L dragging the T in the R R 1
succession without moving the T R R R R 1 L L L the T on the left R 0.99
L just drag the T pointer R R R 1 L L L the T on the right R 0.99
L just release the T button R R R 1 L L L L T in your left hand 0.99
dialog box with the T R R R R 1 L START As the T moves R R R 0.89
L displayed when the T pointer R R R 1 L START Place the T in R R R 0.86
direction you drag the T R R R R 1 L you want the T to R R R 0.83
L L distance the T has moved R R 1 L L L L T ( left ) and 0.74
L directly with the T . R R R 1 L START When the T is R R R 0.56
displayed , move the T R R R R 1 L L L L T ( right ) . 0.55
Enter or click the T R R R R 1 L L When the T is placed R R 0.51
highlighted , release the T R R R R 1
highlighting it with the T R R R R 1
highlight it with the T R R R R 1
pixel coordinates of the T R R R R 1
L shrill command the T controls R R R 1

Table 6.9 – Top neologism sense examples for the target mouse – extracted from inferred EM
estimates for sense 1

Additionally for EM and Gibbs, table 6.8 gives examples of cases whose most probable

sense is k = 1. In particular for the year 2008, it gives a top 10 sense examples out of cases

whose most probable sense is k = 1, as ranked by their probability to have sense k = 1. The

sense examples provided in the table is presented the way the data was provided for the al-

gorithms for inference, where T refers to the target, L’s and R’s are the pad words when the

n-gram is short of 4 words to the left and right of the target. The sense examples are consistent

with the ‘computer pointing device’ sense.

Following is a further insight of looking into the sense examples: Based on the ‘tracks’

plot in figure 6.4, the corpus emergence date C0 appears to be 1983. Therefore it is expected

that there is (literally) no sense examples plot for ‘sense 1’ (neologistic sense) before 1983.

Table 6.9 gives (i) sense k = 1 examples from the year 1990 and (ii) sense k = 1 examples

from the year 1970, seeking a top 30 in each case. Those from 1990 are consistent with the

‘computer pointing device’ sense. From 1970 the model returned just 24 examples whose most

probable sense is k = 1. Some are not at all related to the neologistic sense and some possibly

are, possibly due to wrong year annotations coming from Google n-grams dataset.

As an indication of the time-taken for the experiments, for the mouse dataset with approxi-

mately 910k data items, the EM run for 1 iteration takes 8.01 seconds, while the Gibbs sampler

takes 5.5 seconds for 1 iteration. With these, for mouse the total time taken for 60 EM iterations

turned out to be approximately 8 minutes and the total time taken for 10000 Gibbs iterations is
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approximately 15.2 hours.

6.3.2 gay

In figure 6.5 the first 2 plots provide the inferred EM and Gibbs sampling estimates and also

‘tracks’ plot for the target gay, with the algorithms run with 3 sense variants. The word ‘gay’

according to OED always used to refer to ‘being happy’, but at some time during the 20th

century it took on an additional ‘homosexual’ sense, which is by now its predominant sense.

For both EM and Gibbs the black line for the inferred πππ t [k = 2] values show a neologistic

pattern: according to the EmergeTime algorithm of section 4.1.4 the emergence dates are

1970 and 1969 respectively.
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Figure 6.5 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred πt [k]
sense parameter outcomes for gay experiment, and the third plot shows the probability ‘tracks’
for some words that are intuitively associated with the ‘homosexual person’ sense of gay. Dating
information – EM:1970, GS:1969, OED:1941, Tracks:1969

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 2) neologism: lesbian, lesbians, men, bisex-
ual, rights, movement, /, women, liberation, couples,
for, straight, male, studies, community, and, issues,
parents, people, among, against, Lesbian, or, com-
munities, (, relationships, families, youth, movements,
abortion

gist(sense 2) neologism: lesbian, men, lesbians,
rights, bisexual, community, movement, /, liberation,
straight, male, women, couples, people, for, or, studies,
parents, issues, who, anti, identity, among, (, marriage,
Lesbian, against, communities, relationships, have

Table 6.10 – Top 30 gist words for the target gay ranked by comparing word distributions to corpus
Probabilities

The third plot in figure 6.5 show tracks for community, men, rights and lesbian – words that

we expect to be associated with the neologistic ‘homosexual’ sense of gay. The emergence time

based on this according to the procedure in section 4.1.4 is 1969. For gay, the ‘EM-Date’ and

‘GS-Date’ are very close to the ‘tracks’ date. The ‘OED’ first citation date of 1941 in this case

is around 28 years earlier than the tracks-based and the inferred sense emergence dates.

Table 6.10 provides the top 30 ‘gist’ words for the neologistic sense when ranked by com-

paring inferred θθθ k=2 distribution to Pcorp distribution. For completeness the top 30 ‘gist’ words

for the other senses of gay are also provided for reference in 6.29(c). For nearly all these ‘gist’
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Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
HIV seropositive and seronegative T R R R R L L L L T / bisexual / transgender
perspectives on lesbian , T R R R R L L L / T / bisexual studies R
history : Lesbians and T R R R R L L L L T / lesbian rights movement
L HIV infection in T men R R R L L L L T / lesbian liberation movement
perceived workplace discrimination against T R R R R L L L L T rights and feminist movements
Permanent partners : Building T R R R R L L L L T liberation and feminist movements
L high - risk T men R R R L L L L T / lesbian university students
L gender studies , T and R R R les / bi / T R R R R
Gender roles among Latino T R R R R L L L L T / lesbian / bi
L L L General T and lesbian travel R L L feminist and T liberation movements R R

Table 6.11 – Top neologism sense examples for the target gay extracted from inferred EM and
Gibbs sampling estimates for sense 2

words (such as lesbian, men, rights, movement and relationships) they seem especially associ-

ated with the ‘homosexual’ usage of the target gay. Further these words are unanimously found

from both the inferred outcomes. Also none seems conspicuously identified with a different

sense.

6.3.3 strike

The word strike has been in existence for a long time, and according to OED it had multiple

senses since 12th century, such as ‘hit’ and ‘find a deal’. After industries and unions were

formed the word strike acquired a new sense relating to ‘industrial action’ – the OED date for

this is 1822. So a long time-span between 1800 and 2008 has been considered for this target

– due to this long time-span it turns out that there is a lot of data items (approximately 5052k,

provided in table 6.5). All these data were considered for the experiments.
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Figure 6.6 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred πt [k]
sense parameter outcomes for strike experiment, and the third plot shows the probability ‘tracks’
for some words that are intuitively associated with the ‘industrial action’ sense of strike. Dating
information: EM:1904, GS:1901, OED:1822, Tracks: 1899

In figure 6.6 the first 2 plots provide the inferred EM and Gibbs sampling estimates and

also ‘tracks-plot’ for the target strike, with the algorithms run with 3 sense variants (K = 3).

For the EM case, the blue line for πππ t [k = 1] values shows a neologistic pattern according to

EmergeTime algorithm of section 4.1.4, with emergence time 1904, while for the Gibbs case,
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gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 1) neologism: -, general, of, went, hunger,
on, ’, price, in, slip, by, called, The, workers, during,
., miners, END , day, was, coal, after, no, the, first,
emptive, capability, a, sit, lock

gist(sense 2) neologism: -, general, of, went, ’, hunger,
on, in, slip, by, price, miners, called, The, workers,
during, day, ., coal, END , was, after, no, the, first,
great, emptive, capability, a, sit

Table 6.12 – Top 30 gist words for the target strike ranked by comparing word distributions to
corpus Probabilities

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L shopmen ’ s T of R R R L L Boston police T of 1919 R R
L L shearers ’ T . END R R L L anthracite coal T of 1902 R R
short distances along the T R R R R L L L L T by anthracite coal miners
short - lived general T R R R R L L anthracite coal T in 1902 R R
L shop stopped to T the R R R L L slip , T - slip R R
L L shopmen ’s T of 1922 R R L L San Francisco T of 1934 R R
L Shortly after the T , R R R L pre - emptive T against R R R
L L shopmen ’s T . END R R nation - wide railway T R R R R
L Shortly after the T began R R R L L L railway T of 191 1 R
short - lived hunger T R R R R L L L L T of bituminous coal miners

Table 6.13 – Top neologism sense examples for the target strike extracted from inferred EM and
Gibbs sampling estimates for sense 1 and sense 2 respectively

it is the black line for πππ t [k = 2] values which shows the neologistic pattern, with emergence

time 1901. Here, EM and Gibbs have found different sense numbers k = 1 and k = 2 with

neologistic patterns. Such allocation of sense numbers by both the algorithms are random.

The ‘tracks-plot’ shows tracks for union, coal, miners – words which we expect to be es-

pecially associated with the neologistic ‘industrial action’ sense of strike. The emergence time

based on this according to the procedure in section 4.1.4 is 1899. From the dating informa-

tion provided for strike in table 6.6, the ‘tracks’ date is is still closer to the ‘EM-Date’ and

‘GS-Date’ and all these dates are later than the ‘OED’ first citation date.

For EM and Gibbs, table 6.12 provides the top 30 ‘gist’ words for the neologistic sense

when ranked by comparing inferred θθθ k=1 and θθθ k=2 distributions to Pcorp distribution. (For the

‘gist’ words for the other senses see 6.29(g)). For most of these ‘gist’ words (such as hunger,

miners, workers and general) they seem especially associated with the ‘industrial action’ usage

of the target strike. Further these words are unanimously found from both the inferred out-

comes. There are some (such as slip, emptive, capability) which seem unlikely in the context

of usage with strike in its ‘industrial action’ sense. ‘strike-slip’ (or ‘strike slip’) is a technical

term from geology. ‘pre-emptive strike’ and ‘strike capability’ are phrases from discussions

of military matters. Figure 6.7 shows the tracks plots for slip, emptive, capability). They all

show a steep increase in the 2nd half of the 20th century. Even though the apparently neol-

ogistic sense components (k = 1 for EM and k = 2 for Gibbs) have a climbing trend starting

earlier than that, as the other components do not have a climbing trend, this is arguably why

the model has accommodated these aspects of the context of strike within the neologistic sense

component. For completeness the top 30 ‘gist’ words for the other senses are also provided for

reference in 6.29(g). Additionally, for EM and Gibbs table 6.13 gives examples of cases whose

most probable sense is k = 1 and k = 2. In particular for the year 1950, it gives a top 10 sense
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Figure 6.7 – Tracks plot for words slip, emptive, capability

out of cases whose most probable sense is k = 1 and k = 2, as ranked by their probability to

have senses k = 1 and k = 2 respectively.

It can be observed from the Gibbs sampling estimates the HPD interval is very narrow

for the neologism sense compared to the other senses, assuring that the model is extremely

confident about the inference estimates obtained for the neologism sense.

6.3.4 bit

In figure 6.8 the first two plots provide the inferred EM and Gibbs sampling estimates for the

target bit and also a ‘tracks-plot’ with the algorithms run with 3 sense variants K = 3.

For both EM and Gibbs the black line for the inferred πt [k = 2] values show a neologistic

pattern: according to the EmergeTime algorithm of section 4.1.4 in both cases the emergence

time is 1958. On looking further into the Gibbs sampling inferred plot, it can be observed that

the HPD interval for all the senses are narrow and are very close to the mean of the estimates,

which indicates the higher confidence of the model.

The ‘tracks’5 plot show tracks for 8, 32, 64, memory – words which we expect especially

associated with the neologistic ‘a basic unit of information’ sense of bit. The emergence time

based on this according to the procedure in section 4.1.4 is 1966, which 8 years later than the

EM and Gibbs inferred emergence dates. This may be because there are words other than the

ones used for ‘tracks’ that are associated with the emerging sense and has had an impact in the

inference outcomes. However all these dates are later than the ‘OED’ first citation date.

Table 6.14 provides the top 30 ‘gist’ words for the neologistic sense when ranked by com-

paring inferred θθθ k=2 distribution to Pcorp distribution. (For the ‘gist’ words for the other senses

see 6.29(d)). For nearly all these ‘gist’ words (such as 16, 32, 8, rate and significant) they seem

especially associated with the ‘a basic unit of information’ usage of the target bit. There are

5The tracks plot for target bit has labels with ‘X’ padded to their left – this is done due to the technical constraints
with the plotting function in R.
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Figure 6.8 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred πt [k]
sense parameter outcomes for bit experiment, and the third plot shows the probability ‘tracks’ for
some words that are intuitively associated with the ‘basic unit of information’ sense of bit. Dating
information – EM:1958, GS:1958, OED:1948, Tracks: 1966

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 2) neologism: -, 16, 32, 8, bit, by, rate, (,
significant, –, 64, data, ), 4, 1, an, address, error, The,
binary, number, /, word, most, bus, two, set, 24, or,
register

gist(sense 2) neologism: -, 16, 32, 8, as, bit, by, rate, (,
significant, every, –, data, 64, ), an, 4, 1, The, address,
error, binary, most, number, word, /, set, the, bus, two

Table 6.14 – Top 30 gist words for the target bit ranked by comparing word distributions to corpus
Probabilities

some (such as the, by, /) where the association is not obvious but they also do not seem espe-

cially associated with other senses. Additionally for EM and Gibbs, table 6.15 shows examples

of cases whose most probable sense is k = 2. In particular for the year 2008, it gives a top 10

sense out of cases whose most probable sense is k = 2, as ranked by their probability to have

sense k = 2.

6.3.5 compile

For this experiment, a sub-corpus just for compiling was first created, but when it was seen

that this dataset had just 75644 items it was supplemented also with a sub-corpus for compile.

The datasets pertaining to these words were considered to be a single dataset for the inference

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
perform a 64 - T R R R R L Unsigned 32 - T integer R R R
pixels with 8 - T R R R R L unsigned 32 - T integer R R R
pieced together bit by T R R R R L Unsigned 64 - T integer R R R
pixel , 8 - T R R R R L Unsigned 16 - T integer R R R
piece and bit by T R R R R L unsigned 16 - T integer R R R
piece , bit by T R R R R L unsigned 64 - T integer R R R
piece together bit by T R R R R L L L L T analog / digital converter
L full 16 - T data R R R L 32 32 - T registers R R R
L full 24 - T color R R R L 16 32 - T registers R R R
full adder for each T R R R R L unsigned 32 - T integers R R R

Table 6.15 – Top neologism sense examples for the target bit extracted from inferred EM and Gibbs
sampling estimates for sense 2
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procedures. This process of making a sub-corpus covering more than one alternate form of a

base word is a simple work-around for the fact that the 5-gram data is not itself reduced to base

forms. In the discussion we will for simplicity just refer to the ‘target’ compile.

compile has long standing senses such as ‘to gather’ or ‘to put together’, but after the

introduction of computer and programming languages, it acquired a new usage ‘transform to

machine code’. In figure 6.9 the first 2 plots provide the inferred EM and Gibbs sampling

estimates and also ‘tracks’ plot for the target compile, with the algorithms run with 3 sense

variants (K = 3). For both EM and Gibbs the black line for the inferred πππ t [k = 2] values show

a neologistic pattern: according to the EmergeTime algorithm of section 4.1.4 in both cases

the emergence time is 1965.
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Figure 6.9 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for compile/compiling experiment, and the third plot shows the
probability ‘tracks’ for some words that are intuitively associated with the ‘transform to machine
code’ sense of compile/compiling. Dating information – EM:1965, GS:1965, OED:1952, Tracks:
1972

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 2) neologism: time, at, -, error, known, not,
will, run, determined, link, ,, ., edit, END , –, errors,
disseminate, or, editing, archive, type, rather, done,
and, than, checking, occurs, because, detected, At

gist(sense 2) neologism: time, at, -, run, error, known,
,, link, program, and, ., END , execute, code, source,
or, determined, edit, not, application, –, will, dissemi-
nate, rather, errors, than, your, archive, type, it

Table 6.16 – Top 30 gist words for the target compile ranked by comparing word distributions to
corpus Probabilities

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L L enforced at T time . R R L L L L T - link - run
L L enter , T , and R R L L L L T time rather than run
L L Enter , T , and R R L L L - T - run cycle R
L L generate a T - time R R L L L L T - time error occurs
L L generated at T time . R R L L L either T time or run R
L L L Periodically T – ( A R L L edit - T - run R R
L L performed at T time and R R L L L L T time or at run
L L performed at T time , R R L L L L T time or run time
L L performed at T time . R R L L L - T - link - R
L L performed at T - time R R L L L at T time or run R

Table 6.17 – Top neologism sense examples for the target compile extracted from inferred EM and
Gibbs sampling estimates for sense 2
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The third plot in figure 6.9 show tracks for errors, fixed, detected – words that we expect

to be associated with the neologistic ‘transform to machine code’ sense of compile. The emer-

gence time based on this according to the procedure in section 4.1.4 is 1972. For compile, the

‘EM-Date’ and ‘GS-Date’ are not too far from the ‘tracks’ date. The ‘OED’ first citation date

is 1952 and in this case it is 13 years earlier.

Table 6.16 provides the top 30 ‘gist’ words for the neologistic sense when ranked by com-

paring inferred θθθ k=2 distribution to Pcorp distribution (for the ‘gist’ words for the other senses

see 6.29(f)). For nearly all these ‘gist’ words (such as run, error, link, type) they seem espe-

cially associated with the ‘transform to machine code’ usage of the target compile. Looking

at the gist words via GS, the list contains more things that stand out as related to computer

code than the EM version (eg. code, source, program). If you look at the other senses, the

EM version has some of these under other senses. Also comparing the πt(k = 2) plots, the GS

version climbs to a higher value than the EM plot. One could argue that the GS version has

done a better job at clearly isolating the computer-related sense in this case.

Additionally, for EM and Gibbs table 6.17 gives examples of cases whose most probable

sense is k = 2. In particular for the year 1990, it gives a top 10 sense out of cases whose

most probable sense is k = 2, as ranked by their probability to have sense k = 2. Combining

two datasets for compile and compiling was just a choice made during experiments and had no

intention to artificially manipulate the dataset to get a positive outcome.

6.3.6 paste

In figure 6.10 the first 2 plots provide the inferred EM and Gibbs sampling estimates and

also ‘tracks’ plot for the target paste, with the algorithms run with 3 sense variants. The word

‘paste’ always used to refer to ‘a sticky semi-solid substance’, but after the introduction of

computer operating systems, it took on an additional ‘duplicate text/images in computer edit’

sense. For EM and Gibbs, the ‘black’ line for the inferred πππ t [k = 2] and ‘blue’ line for the

inferred πππ t [k = 1] shows a neologistic pattern: according to the EmergeTime algorithm of

section 4.1.4 in both cases it is 1981.

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 2) neologism: cut, copy, you, can, want, ”,
-, –, You, V, Copy, +, and, Cut, ’, scissors, Ctrl, text,
Clipboard, method, Paste, then, also, where, opera-
tions, out, eugenol, •, oxide, job

gist(sense 1) neologism: cut, copy, you, can, want,
-, ”, –, Add, and, You, Copy, scissors, tomatoes, ’,
Cut, START , then, ,, text, ounce, Clipboard, method,
When, Paste, Stir, out, also, where, •

Table 6.18 – Top 30 gist words for the target paste ranked by comparing word distributions to
corpus Probabilities

The ‘tracks’ plot show tracks for cut, copy, text, image, clipboard – words that we expect to

be associated with the neologistic ‘duplicate text/images in computer edit’ sense of paste. The

emergence time based on this according to the procedure in section 4.1.4 is 1982. For paste, the

‘EM-Date’ and ‘GS-Date’ are very close to the ‘tracks’ date. The ‘OED’ first citation date of

1975 in this case is just 7 years earlier than the ‘tracks’-based and the inferred sense emergence
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Figure 6.10 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for paste experiment, and the third plot shows the probability
‘tracks’ for some words that are intuitively associated with the ‘homosexual person’ sense of paste.
Dating information – EM:1981, GS:1981, OED:1975, Tracks:1982

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L just copy and T the R R R Edit ¿ Paste to T R R R R
L just cut and T . R R R Paste Special command to T R R R R
L just cut and T it R R R where you wish to T R R R R
L just copy and T it R R R You may want to T R R R R
L just cut and T the R R R Edit , Paste to T R R R R
L L layout and T - up R R You can cut and T R R R R
L L layout , T - up R R You could cut and T R R R R
L enables you to T the R R R START You can even T R R R R
perpetual , pistareen , T R R R R You can copy and T R R R R
L L pistareen , T - pot R R You can cut , T R R R R

Table 6.19 – Top neologism sense examples for the target paste extracted from inferred EM and
Gibbs sampling estimates for sense 2 and sense 1

dates.
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Figure 6.11 – Tracks plot for words scissors, eugenol, oxide in comparison with the words cut,
copy, text, image, clipboard

For the EM and Gibbs sampling outcomes, table 6.18 provides the top 30 ‘gist’ words for
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the neologistic sense when ranked by comparing inferred θθθ k=2 and θθθ k=1 distributions to Pcorp

distribution (for the ‘gist’ words for the other senses see table 6.29(j)). For many of these

‘gist’ words (such as cut, copy, Ctrl, text, clipboard) they seem especially associated with the

‘duplicate text/images in computer edit’ usage of the target paste. Further these words are

unanimously found from both the inferred outcomes. However, the words scissors, eugenol,

oxide, tomatoes, stir, ounce stands out as rather unexpected in the context of a ‘duplicate tex-

t/images in computer edit’ usage of paste. A ‘tracks’ plot (in figure 6.11) for scissors, eugenol,

oxide associated with the neologistic sense of EM outcome are clearly against the tracks for

the words associated with the ‘duplicate text/images in computer edit’ sense, so there is no

particular reason to be attributed for the inclusion of such words to the neologistic sense –

these can just be considered as ‘false’ positives. However, tracks for the words tomatoes, stir,

ounce associated with the neologistic sense of GS outcome seem to start close to zero and go

up around 1970. Even though this trend has a somewhat earlier starting point than that for the

neologistic sense of paste, the absence of other inferred sense components with an increasing

trend perhaps explain why the model has accommodated these aspects of the context of paste

within the component predominantly associated with the ‘duplicate text/images in computer

edit’ usage.

Additionally, for EM and Gibbs, table 6.19 gives examples of cases whose most probable

senses are k = 2 and k = 1. For EM and Gibbs, in particular for the year 1995 it gives a top

10 sense examples out of cases whose most probable senses are k = 2 and k = 1, as ranked by

their probability to have senses k = 2 and k = 1.

6.3.7 surf

Besides long established senses (relating to waves and to a particular water sport), after the

evolution of the internet the word surf acquired a new usage ‘exploring the internet’: the ‘OED’

first citation date for this is 1992. For this experiment, sub-corpora for several forms of the word

surf for the period 1950 – 2008 were extracted and then combined; the forms were surf, surfed,

and surfing. This was done for the same reason as for the experiments relating to compile.

Initially a sub-corpus just for surfing was created, but it was found that it contained only 15k

items. Merging the separate sub-corpora is a simple work-around for the fact that the 5-gram

data is not itself reduced to base forms.

For all the targets discussed earlier, the experiments were conducted with the number of

senses set to K = 3, and it turned out that the inference procedures discovered the neologistic

sense . It may be that a given neologistic sense is too minor relative to other senses to be

detected with K = 3 and it seems target surf is an example of such a case.

In figure 6.12, the left and right-hand side plots show the EM inferred outcomes for the

target surf/surfing/surfed with 3 and 4 sense settings. In neither case was one of the senses

assessed to be a neologism – in the 4-sense case the green line in the plot for ‘sense 3’ visually

resembles a neologistic sense though displaced upwards. So, a further experiment with K = 5
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was conducted.
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Figure 6.12 – EM inferred plot – surf/surfing/surfed – 3 and 4 sense settings

In figure 6.13 the first 2 plots show the the inferred EM and Gibbs estimates, with the

algorithms run with 5 sense variants (K = 5), whilst the third plot gives a ‘tracks’ plot for

the target surf. For the EM case, the green line for the inferred πt [k = 3] values shows a

neologistic pattern and for the Gibbs case, the purple line for the inferred πt [k = 4] values

shows a neologistic pattern: according to the EmergeTime algorithm of section 4.1.4 the

emergence date in both cases is 1992.
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Figure 6.13 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πππ[k] sense parameter outcomes for surf/surfing/surfed experiment, and the third plot shows the
probability ‘tracks’ for some words that are intuitively associated with the ‘exploring internet’
sense of surf/surfing/surfed. Dating information – EM:1992, GS:1992, OED:1992, Tracks: 1993

The ‘tracks’ plot show tracks for net, mail, internet, web – words that we expect to be asso-

ciated with the neologistic ‘exploring inter-sense’ sense of surf/surfing/surfed. The emergence

time based on this according to the procedure in section 4.1.4 is 1993. So for surf/surfing/-

surfed, the ‘EM-Date’, ‘GS-Date’ and ‘tracks’ date are all very close. In this case the ‘OED’

first citation date is 1992 and so is also very close to other emergence dating. The ‘OED’ first
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gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 3) neologism: END , Internet, ., Net, Web,
net, ”, or, web, Wide, World, ’, for, mail, and, turf, ?,
while, internet, ,, time, L, games, your, looking, -, go,
e, beach, information

gist(sense 4) neologism: Web, Internet, you, ,, Net, or,
net, to, can, ”, web, how, START , ’, Wide, World,
learn, while, time, games, ’re, are, ?, when, want, not,
turf, If, mail, You

Table 6.20 – Top 30 gist words for the target surf ranked by comparing word distributions to corpus
Probabilities

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L L L L T the Internet , play L L you ’re T the Internet R R
L L L L T the Web and check L L L you T the World Wide R
L L L L T the Web and send L World Wide Web T . R R R
L L L L T the Web , send L L you ’re T the Net R R
L L L L T the Internet , send L L L L T ” the World Wide
L L L L T the Web to find L L L time T the World Wide R
L L L L T the Internet in search L L Do you T ? ” R R
L L L L T the Internet , read L L L can T the World Wide R
L L L L T , and every accessible L L L L T ’ n ’ turf
L L L L T the Web , play L L L L T the World Wide Web

Table 6.21 – Top neologism sense examples for the target surf extracted from inferred EM and
Gibbs sampling estimates for sense 3 and sense 4 respectively.

citation date is 1992 and in this case it is very close to the corpus emergence date.

For both cases, table 6.20 provides the top 30 ‘gist’ words for the neologistic sense when

ranked by comparing inferred θθθ k=3 and θθθ k=4 distributions to Pcorp distribution (for the ‘gist’

words for the other senses see 6.29(b)). For most of these ‘gist’ words (such as internet, world,

wide, web and net) they seem especially associated with the ‘exploring internet’ usage of the

target surf/surfing/surfed. Further these words are unanimously found from both the inferred

outcomes. The word turf stands out as rather unexpected in the context of a ‘water-sport’ usage

of surf. The expression surf ‘n’ turf apparently refers to ‘a meal combining fish with meat’.

A tracks plot (in figure 6.14) for turf and n shows them to have sharp increase in probability

around 1980 and this probably explains why the model has accommodated this aspect of the

context of surf within the component that predominantly relates to the ‘exploring internet’

sense. Looking at the ‘gist’ words for the other senses in table 6.29(b)) it can be seen that

some senses are very closely related (say sense 1, sense 2 and sense 3 are seemingly related

to ‘water sport’ sense). Such relationships can be confirmed by computing a KL-divergence

distance between the inferred word distributions θθθ k for all senses – work with respect to this is

discussed further in section 6.7.2.

Additionally, for EM and Gibbs table 6.21 gives examples of cases whose most probable

senses are k = 3 and k = 4. For EM and Gibbs, in particular for the year 2008 it gives a top

10 sense examples out of cases whose most probable senses are k = 3 and k = 4, as ranked by

their probabilities to have senses k = 3 and k = 4.

6.3.8 boot

For this experiment, sub-corpora for boot, boots, booted and booting were extracted an com-

bined. The same remarks apply as in the case of compile and surf: due to relatively small
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Figure 6.14 – ‘Tracks’ plot showing tracks for words turf, n

amounts of data for the separate forms, the data for several variants are combined as a work-

around for the fact that the 5-gram data is not itself reduced to base forms.

In figure 6.15 the first 2 plots provide the inferred EM and Gibbs sampling estimates

and also ‘tracks’ plot for the target boot/boots/booting/booted, with the algorithms run with 5

sense variants (K = 5). It required a 5 sense setting (K = 5) for both inference procedures to

discover the neologistic sense representing ‘computer start up’ usage from the boot/boots/boot-

ing/booted dataset. For the EM case, the green line for the inferred πππ t [k = 3] values shows a

neologistic pattern and for the Gibbs case, the black line for the inferred πππ t [k = 2] values shows

a neologistic pattern: according to the EmergeTime algorithm of section 4.1.4 the emergence

date are 1981 and 1980 respectively.
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Figure 6.15 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for boot/boots/booted/booting experiment, and the third plot shows
the probability ‘tracks’ for some words that are intuitively associated with the ‘computer start up’
sense of boot/boots/booted/booting. Dating information – EM:1981, GS:1980, OED:1980, Tracks:
1982

The ‘tracks’ plot show tracks for system, process, disk, computer – words that we expect

to be associated with the neologistic ‘computer start-up’ sense of boot/boots/booting/booted.
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gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 3) neologism: system, you, time, process,
camp, is, computer, ”, can, to, from, received, your, /,
disk, (, ), sector, not, record, dual, be, when, at, during,
will, up, master, as, the

gist(sense 2) neologism: system, you, is, time, com-
puter, process, from, car, the, can, /, not, be, up, sector,
disk, it, (, at, START , your, record, received, when,
camp, other, to, will, ), dual

Table 6.22 – Top 30 gist words for the target boot ranked by comparing word distributions to
corpus Probabilities

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L directory of your T disk R R R L system during the T process R R R
disk is used to T R R R R L automatically during the T process R R R
L L disk ’s T sector . R R L operating system at T time R R R
L disk ’s master T record R R R L L When you T your computer R R
did not receive any T R R R R L L When you T the system R R
L directory of the T disk R R R L displayed during the T process R R R
L directory of the T device R R R L L When you T the computer R R
distribution is treated as T R R R R L operating system is T . R R R
L L disk , T from the R R L L L master T record ( MBR R
L L L disk T sector . END R L L L L T from the floppy disk

Table 6.23 – Top neologism sense examples for the target boot extracted from inferred EM and
Gibbs sampling estimates for sense 3 and sense 2 respectively

The emergence time based on this according to the procedure in section 4.1.4 is 1982. For

boot/boots/booting/booted, the ‘EM-Date’ and ‘GS-Date’ are close to the ‘tracks’ date and lies

within EM < 10% and GS < 10% (provided in table 6.6. The ‘OED’ first citation date is 1980

and in this case it is very close to the corpus emergence date.
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Figure 6.16 – Tracks plot for words car, camp

For both cases, table 6.22 provides the top 30 ‘gist’ words for the neologistic sense when

ranked by comparing inferred θθθ k=3 and θθθ k=2 distributions to Pcorp distribution (for the ‘gist’

words for the other senses see 6.29(e)). For many of these ‘gist’ words (such as system, process,

time, computer, sector) they seem especially associated with the ‘computer start-up’ usage of

the target boot/boots/booted/booting. Further these words are unanimously found from both the

inferred outcomes. There are words (such as car and camp) which stand out as not particularly
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likely in the context of a use of boot in its computer-related sense. These likely stem from the

expressions car boot and boot camp. A ‘tracks’ plot for car and camp is shown in figure 6.16

and it shows them to have increasing probability of occurrence in the context of boot in the

second half of the 20th century, and very little probability before that. Even though this trend

has a somewhat earlier starting point than that for the neologistic sense of boot, the absence

of other inferred sense components with an increasing trend perhaps explain why the model

has accommodated these aspects of the context of boot within the component predominantly

associated with the ‘computer start-up’ usage.

Additionally, for EM and Gibbs table 6.23 gives examples of cases whose most probable

senses are k = 3 and k = 2. For EM and Gibbs, in particular for the year 1990 it gives a top

10 sense out of cases whose most probable senses are k = 3 and k = 2, as ranked by their

probability to have senses k = 3 and k = 2.

6.3.9 rock

Besides several long standing senses rock has according to OED a new usage referring to a

‘genre of music’ after the evolution of such a music form: the OED first citation is from 1956.

Therefore the target rock was considered for a longer period ranging between 1920 and 2008

to identify the neologism sense from the dataset.

The experiments were executed starting with a 3 sense setting (K = 3), then with a 4-sense

setting (K = 4) without the detection of the neologism sense. At the setting K = 5 a neologism

sense was detected. In figure 6.17 the first 2 plots provide the inferred EM and Gibbs sampling

estimates and also ‘tracks’ plot for the target rock, with the algorithms run with 5 sense variants

(K = 5). For the EM case, the red line for the inferred πππ t [k = 0] values shows a neologistic

pattern and for the Gibbs case, the blue line for the inferred πππ t [k = 1] values shows a neologistic

pattern: in both cases according to the EmergeTime algorithm of section 4.1.4 the emergence

date is 1960.

The ‘tracks’ plot show tracks for music, concert, pop, band – words that are expected to be

associated with the neologistic ‘music genre’ sense of rock. The emergence time based on this

according to the procedure in section 4.1.4 is 1967. For rock, the ‘EM-Date’ and ‘GS-Date’ are

close to the ‘tracks’ date. The ‘OED’ first citation date is 1956 and in this case it is close to the

EM and GS emergence dates.

gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 0) neologism: ’, roll, n, -, forming, music,
forth, and, climbing, minerals, cut, jazz, back, –, hard,
pop, place, strewn, blues, salt, drugs, tombs, bottom,
caves, shelters, &, bound, prices, crystal, (

gist(sense 1) neologism: ’, roll, n, -, forming, and, mu-
sic, forth, cut, minerals, climbing, jazz, –, hard, back,
salt, bottom, place, strewn, pop, (, whole, blues, tombs,
bound, ), shelters, &, caves, crystal

Table 6.24 – Top 30 gist words for the target rock ranked by comparing word distributions to corpus
Probabilities

For both cases, table 6.24 provides the top 30 ‘gist’ words for the neologistic sense when

ranked by comparing inferred θθθ k=0 and θθθ k=1 distributions to Pcorp distribution. For some of
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Figure 6.17 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for rock experiment, and the third plot shows the probability
‘tracks’ for some words that are intuitively associated with the ‘genre of music’ sense of rock.
Dating information – EM:1960, GS:1960, OED:1956, Tracks: 1967

Sense examples - EM outcomes Sense examples - Gibbs sampling outcomes
L L out of T ’ n R R L L L L T ’ n ’ roll
L L L English T ’ n ’ R L L L early T ’ n roll R
L L history of T ’ n R R L L L L T Rb - Sr isochron
L L history of T V roll R R L L L L T Rb – Sr isochron
L L L hit T ’ n ’ R L L L L T Rb / Sr isochron
L L L his T ’ n ’ R L L L L T ’ n roll era
L L L his T - hard muscles R L L L L T ’ n ’ rollers
hiking , camping , T R R R R L L L L T ’ n roll stars
L L generation of T ’ n R R L L L L T n ’ roll music
L L genre of T ’ n R R L L L L T ’ n roll music

Table 6.25 – Top neologism sense examples for the target rock extracted from inferred EM and
Gibbs sampling estimates for sense 2

these ‘gist’ words (such as music, roll, blues, pop, n) they seem especially associated with the

‘music genre’ usage of the target rock. Further these words are unanimously found from both

the inferred outcomes. However, there are some words (such as minerals, crystal, caves) where

the association is not obvious but they are related to a different sense (say for EM case ‘sense 3’

and ‘sense 4’ seem related to ‘stone’ related sense). For completeness, the top 30 ‘gist’ words

for the other senses of rock are also provided for reference in 6.29(h).

Additionally, for EM and Gibbs table 6.25 gives examples of cases whose most probable

senses are k = 0 and k = 1. For EM and Gibbs, in particular for the year 1980 it gives a top

10 sense out of cases whose most probable senses are k = 0 and k = 1, as ranked by their

probability to have senses k = 0 and k = 1. It can be seen that some sense examples from the

EM outcomes are not consistent with the neologistic sense ‘genre of music’, rather are related

to ‘huge stone’ sense.

6.3.10 stoned

For the target stoned, figure 6.18 shows the outcome of an initial experiment, using the Google

5-gram books dataset (with 92k data items) and a 5-sense setting. The expected neologistic
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sense was not identified.
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Figure 6.18 – EM inferred plot – stoned – 5 sense setting on Google 5-gram books dataset

The target stoned in the neologistic usage according to OED refers to ‘drunk, extremely

intoxicated’ and is a slang or informal term. It was conjectured that the relative frequency of

this usage would be higher in the fiction subset of the n-gram dataset than it is in the complete

data set, and that perhaps though undetectable in the entire data set it might prove detectable in

the fiction data-set. To test this a subsequent experiment was run using the fiction subset ( 12k

data items)
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Figure 6.19 – The first and second plots show the EM and Gibbs sampling algorithm’s inferred
πt [k] sense parameter outcomes for stoned experiment, and the third plot shows the probability
‘tracks’ for some words that are intuitively associated with the ‘under the influence of drug’ sense
of stoned. Dating information – EM:1965, GS:1960, OED:1952, Tracks: 1959

Figure 6.19 shows the outcomes of this experiment. The first 2 plots provide the inferred

EM and Gibbs sampling estimates and also a ‘tracks’ plot for the target stoned, with the

algorithms run with 4 sense variants (K = 4). In the EM case, the inferred πππ t [k = 0] (red line)

is detected as showing a neologistic patterns, with an emergence time at 1968. In the GS case,
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gist words - EM outcome gist words - Gibbs sampler outcome
gist(sense 0) neologism: mind, out, his, of, time, her,
minds, their, my, gourd, all, head, most, your, eyes, –,
skull, mutilated, people, heads, morning, bairns, asun-
der, whole, at, mile, corpse, lists, the, with

gist(sense 0) neologism: out, mind, of, his, my, time,
their, minds, her, gourd, head, your, most, all, patches,
skull, road, newly, heads, ’s, our, ’re, lists, skulls, mid-
dle, quadrangle, ’m, the, eyes, at

gist(sense 3) neologism: drunk, START , or, I, ’re,
You, ”, you, ’m, ?, so, Are, get, He, he, when, She, not,
’s, was, said, she, both, once, getting, thrice, some-
thing, END , got, .

gist(sense 2) neologism: you, ’re, You, ?, ’m, drunk,
”, Are, START , ’s, She, so, He, not, too, or, I, little,
get, said, when, she, END , both, never, something,
he, getting, ., kitten

Table 6.26 – Top 30 gist words for the target stoned ranked by comparing word distributions to
corpus Probabilities

Sense examples - EM outcomes (sense 0) Sense examples - Gibbs outcomes (sense 0)
L L L L T out of her head L L L L T out of his mind
L L L L T out of his gourd L L L L T out of my mind
L L L L T out of my skull L L L L T out of your mind
L L L L T all the time , L L L L T out of her mind
L L L L T out of my mind L L L L T out of their minds
L L L L T out of his head L L L L T out of his gourd
L L L L T , if the people L L L L T out of his head
L L L L T out of their heads L L L L T out of my head
L L L L T out of their minds L L L L T most of the time
L L L L T out of my head L L L L T out of our minds

Table 6.27 – Top neologism sense examples for the target stoned extracted from inferred EM and
Gibbs sampling estimates for sense 0

Sense examples - EM outcomes (sense 3) Sense examples - Gibbs outcomes (sense 2)
L she was so T she R R R START ” You ’re T R R R R
she was drunk or T R R R R START ” She ’s T R R R R
L L drunk and T . END R R L START I ’m T . R R R
L L drunk , T , or R R L ” You ’re T . R R R
L L drunk and T , and R R was not drunk or T R R R R
L L drunk or T or both R R L L Are you T ? END R R
L drunk , or T , R R R L L drunk or T or both R R
L L drunk or T . END R R L ” You ’re T , R R R
L either drunk or T . R R R L I ’m not T . R R R
L L L or T , or both R L when you ’re T . R R R

Table 6.28 – Top neologism sense examples for the target stoned extracted from inferred EM and
Gibbs sampling estimates for sense 3 and sense 2.

two inferred values are detected as showing a neologistic pattern: πππ t [k = 0] (red line) with

emergence time 1960 and πππ t [k = 2] (black line) with emergence time 1958. The plots in both

the cases are jagged. The jaggedness in the plots can very well be attributed to the smaller

number of data items available from the fiction dataset – this is further discussed in section

6.7.1 under the heading of ablation tests .

The ‘tracks’ plot show tracks for drunk, head, got, getting – words that are intuitively

associated with the neologistic ‘under the influence of drug’ sense of stoned, and the tracks-

based emergence date using these words is 1959. This is close to the emergence dates found by

EM and Gibbs sampling. The ‘OED’ first citation date is 1952 and in this case 7 years earlier.

Table 6.26 provides in the first row the top 30 ‘gist’ words for sense 0 as obtained via

EM and GS, when ranked by comparing inferred θθθ k=0 distribution to Pcorp distribution. The

second row gives the ‘gist’ words for sense 2 as obtained by GS. It also gives the ‘gist’ words

for sense 3 as obtained by EM, which seems of the other senses the closest to also showing
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a neologistic pattern (For completeness, the top 30 ‘gist’ words for the other senses of stoned

are also provided for reference in table 6.29(i)). For some of these (such as mind, out, head,

his and her) they are intuitively especially associated with the ‘under the influence of drug’

usage of the target stoned, though there are others which are unexpected (such as mutiliated,

corpse, list, quadrangle and kitten). On the evidence of the ‘gist’ words, the sense 0 component

inferred by GS seems similar to the sense 0 component inferred by EM, and also the sense 2

GS component seems similar to the sense 3 EM component.

Additionally, for EM and Gibbs cases, tables 6.27, 6.28 show examples from the same

pairs of senses. For the senses which were identified as showing a neologistic pattern the

examples seem mostly consistent with the neologistic sense ‘under the influence of drug’. Also

the examples reinforce the impression of the similarity of the sense 0 GS and sense 0 EM

components, and of the sense 2 GS component and sense 3 EM component.

Overall the outcomes for this experiment on the fiction subset do suggest that the algorithms

are able to detect the anticipated neologistic sense in this subset, though with less clarity than

was the case with the other targets. For example, the GS procedure seems to have identified two

components both arguable corresponding to the anticipated sense, and the inferred time-lines

seem considerably less smooth.

6.4 Non-neologism targets

The experiments discussed in the previous section 6.3 concerned neologism targets, so words

concerning which it was known that during a particular time period a new sense emerged.

It was argued that the experiments provide good evidence that the ‘diachronic model’ was

able to identify these instances of sense emergence. This section will complement this with

experiments on non-neologism targets, so words which, for a certain time period it is known

that no new sense emerged. For these words the desired behaviour is that the model does not

identify a sense emerging within the time period looked at.

The targets which were used for this purpose are given in table 6.30. The ‘Years’ col-

umn in the table provides the year span that was considered for the EM and Gibbs sampling

experiments and ‘Lines’ column is the number of data items (5-grams) with target T .

In the first instance these targets were chosen based on native speaker intuition. ostensible

and cinema were chosen in the expectation that these have just one sense, and that remained

so throughout the indicated time period. The targets present, promotion, theatre, play, plant,

spirit where chosen in the expectation that these have multiple senses, and that none of these

senses emerged in the indicated time period.

As with the neologism targets, ground-truth concerning non-neologism is a somewhat dif-

ficult issue: there is no gold-standard reference set from which to select non-neologism targets.

For the above-mentioned targets we made use of the OED to try to confirm absence of sense

emergence for the time periods chosen. Concerning ostensible this confirms a single sense

‘Declared, avowed, professed; presented (esp. untruthfully or misleadingly) as actual’. For
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gist words - EM outcome gist words - Gibbs sampler outcome
(a) mouse - outcomes

gist(sense 0): cat, rat, a, ”, as, keyboard, anti, game, -,
,, like, such, rabbit, In, little, or, and, not, have, clicks,
IgG, was, field, but, than, quiet, ’, few, white, –

gist(sense 0): in, cells, of, anti, embryo, mammary,
model, embryos, -, brain, human, (, cell, house, tumor,
/, development, virus, gene, from, END , :, bone, IgG,
Mus, skin, marrow, embryonic, ., adult

gist(sense 2): cells, in, embryo, mammary, embryos,
brain, cell, of, tumor, model, development, virus, /,
house, gene, bone, :, Mus, END , marrow, skin, (,
from, embryonic, adult, ., during, early, musculus, 2

gist(sense 2): cat, rat, a, ”, keyboard, as, game, -, in,
like, human, such, ,, In, of, little, model, for, rabbit,
than, field, A, have, ’, but, white, quiet, and, clicks, not

(b) surf - outcomes
gist(sense 0): START , was, The, is, hear, could, high,
heavy, that, be, so, zone, a, I, no, up, too, not, there, in,
If, when, running, In, When, but, ’s, There, R, where

gist(sense 0): END , zone, in, ., into, through, by, ”,
;, for, clam, from, wind, Spisula, beyond, above, body,
swimming, (, fishing, sun, outside, channel, world, so-
lidissima, away, gentle, toward, inner, R

gist(sense 1): zone, in, of, into, through, pounding,
heavy, line, is, ;, by, a, crashing, breaking, at, beyond,
ace, up, from, outside, waves, END , R, below, high,
above, rolling, ocean, wind, .

gist(sense 1): on, shore, beach, upon, ,, against, mail,
-, that, breaking, beat, rocks, sea, beating, coast, e,
white, reef, which, along, beaten, was, ace, its, The, a,
turf, great, breaks, their

gist(sense 2): of, on, in, breaking, zone, a, swim-
ming, which, through, upon, against, wind, shore, was,
beach, heavy, into, white, where, with, it, along, rocks,
diving, pounding, as, sea, -, beat, clam

gist(sense 2): right, ,, START , was, as, The, but,
which, where, it, when, and, swimming, diving, is,
so, water, skiing, with, I, sailing, then, that, there, or,
scuba, they, too, not, sun, transport

gist(sense 4): of, sound, in, into, out, roar, through,
pounding, edge, R, thunder, line, The, white, breaking,
noise, sun, down, waded, by, boom, a, distant, crash,
best, heavy, crashing, up, like, deep

gist(sense 3): sound, roar, out, ,, edge, The, thunder,
of, could, hear, on, noise, to, waded, boom, crash,
be, white, sounds, listening, I, he, plunged, START ,
down, beach, R, run, can, distant

(c) gay - outcomes
gist(sense 0): ”, END , ;, ?, happy, life, world, man,
., but, lively, bar, so, light, flowers, a, ’, bright, very,
young, !, cheerful, as, with, colors, good, his, little,
scene, full

gist(sense 0): the, of, with, and, world, light, grave,
from, bright, happy, in, life, lively, flowers, young,
their, ;, ,, colors, cheerful, full, hearted, his, company,
little, laugh, by, brilliant, ladies, And

gist(sense 1): START , was, I, he, be, It, that, He, not,
you, out, to, a, grave, ’m, is, R, She, The, they, had,
because, were, been, if, ’re, it, very, know, openly

gist(sense 1): ”, I, not, he, you, ’, be, ’m, man, ?, les-
bian, ’re, who, being, START , was, they, It, that, ’s,
are, He, or, is, openly, it, as, am, have, she

(d) bit - outcomes
gist(sense 0): END , lip, ., her, than, his, as, L, time,
information, much, money, ?, but, luck, more, too, on,
”, of, every, my, lower, fun, then, from, paper, work,
into, complicated

gist(sense 0): END , ., lip, her, than, his, time, of,
more, information, ”, but, on, too, money, ?, in, my,
from, luck, and, then, ,, at, into, lower, work, fun, pa-
per, off

gist(sense 1): not, was, ’s, It, be, have, just, I, had,
been, START , like, ’m, quite, may, feel, do, there, R,
it, you, up, little, were, He, to, There, ’re, felt, Not

gist(sense 1): was, not, ’s, be, It, I, have, just, START ,
had, like, quite, been, it, little, to, ’m, may, do, you,
feel, up, a, there, is, He, were, me, Not, ’re

(e) boot - outcomes
gist(sense 0): END , ., -, high, ;, league, seven,
heeled, knee, leather, toed, black, lace, their, straps,
into, ”, riding, her, own, go, nailed, tucked, ’, with,
under, steel, length, heavy, polished

gist(sense 0): shoes, shoe, ,, and, he, which, were,
but, spurred, gloves, clothing, industry, as, spurs, hats,
had, said, so, then, that, all, they, a, she, hat, or, I,
made, was, clothes

gist(sense 1): he, were, which, was, car, on, but, had,
that, other, I, it, then, feet, His, the, been, so, said, foot,
floor, as, out, they, she, them, made, went, one, ground

gist(sense 1): pair, of, toe, heel, a, sound, soles, out,
the, new, toes, sole, pairs, one, old, heels, down, ’s,
man, Italian, tops, good, at, knife, top, an, two, The,
looked, tip

gist(sense 2): shoe, shoes, ,, and, jeans, gloves, hat,
cowboy, spurred, breeches, hats, black, leather, cloth-
ing, industry, high, spurs, clothes, shirt, trousers, coat,
top, or, rubber, -, a, pants, riding, jack, blue

gist(sense 3): END , ., ”, ;, league, seven, ?, !, ’, go,
feet, their, camp, ’s, her, under, my, black, -, hiking, to,
with, over, leather, his, riding, heavy, combat, straps,
own

gist(sense 4): pair, off, toe, of, pulled, put, took, take,
his, He, heel, my, sound, a, her, pull, soles, down, on,
their, toes, snow, sole, one, new, out, pulling, big, the, I

gist(sense 4): off, high, pulled, put, took, -, take,
heeled, He, knee, pull, my, on, his, jeans, their, with,
leather, patent, big, toed, pulling, cowboy, lace, top,
coat, I, black, tucked, her

Table 6.29 – For (a-e) provides the top 30 gist words of non-neologism senses for the targets mouse,
surf, gay, bit, boot – further continued in next page for other targets

cinema two related senses are distinguished, one for the building where films are shown, and

one for cinema films considered collectively, especially as an art form. Based on their first
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gist words - EM outcome gist words - Gibbs sampler outcome
(f) compile - outcomes

gist(sense 0): list, this, complete, In, run, a, history,
to, of, book, index, program, your, execute, all, To, bib-
liography, comprehensive, an, inventory, information,
lists, them, source, link, dictionary, such, application,
., END

gist(sense 0): list, book, of, index, complete, history,
a, bibliography, this, on, report, all, comprehensive,
lists, an, information, In, data, record, volume, table,
dictionary, inventory, such, catalogue, collection, ex-
haustive, statistics, own, work

gist(sense 1): used, you, able, to, possible, task, pro-
cess, order, difficult, need, attempt, made, will, respon-
sible, impossible, If, would, try, necessary, assistance,
When, help, In, it, not, want, You, purpose, easy, began

gist(sense 1): used, been, was, able, The, have, pos-
sible, be, process, task, is, were, order, START , you,
need, he, in, to, difficult, made, attempt, first, has, I,
for, responsible, would, purpose, try

(g) strike - outcomes
gist(sense 0): blow, balance, between, into, at, terror,
with, as, his, him, up, out, their, root, END , heart,
chord, reader, back, bargain, her, ?, them, conversa-
tion, own, us, very, ;, decisive, me

gist(sense 0): not, did, right, does, he, it, I, to,
START , be, you, do, that, will, would, they, motion,

It, ready, if, me, have, is, we, can, about, able, could,
may, seemed

gist(sense 2): not, did, right, does, he, it, I, START ,
to, be, you, that, do, will, would, they, motion, It, ready,
if, me, have, is, we, can, about, able, could, may, He

gist(sense 1): blow, balance, between, into, at, ter-
ror, with, as, out, his, him, up, END , their, root,
heart, chord, reader, back, bargain, ?, conversation,
her, own, them, ;, very, us, any, decisive

(h) rock - outcomes
gist(sense 1): which, it, but, he, ,, at, where, they, been,
had, that, so, or, has, be, his, L, with, can, have, by,
sand, we, middle, is, then, tree, side, one, may

gist(sense 0): which, it, ,, but, my, that, he, I, at, will,
be, they, been, where, is, build, had, has, so, or, can,
by, have, in, side, with, the, his, we, one

gist(sense 2): START , The, not, I, will, this, is, my,
build, grained, A, whole, This, ”, boat, was, He, do, It,
began, want, fine, Sr, be, If, ’s, On, There, upon, In

gist(sense 2): of, out, The, START , top, cut, mass,
the, piece, in, types, bed, an, type, igneous, solid, wall,
cleft, masses, ledge, grained, carved, face, hewn, edge,
part, great, surface, living, country

gist(sense 3): out, down, of, top, rock, R, up, large, sat,
from, on, flat, sitting, piece, solid, between, against,
carved, cleft, great, ledge, firm, an, cut, foot, a, built,
part, head, living

gist(sense 3): END , ., ;, ”, ?, garden, boat, art, ), for-
mations, face, solid, wall, !, music, into, bottom, star,
for, band, surrounding, walls, gardens, mass, sedimen-
tary, surface, volcanic, concert, bare, or

gist(sense 4): END , ., ;, ”, ?, art, garden, ), boat, (,
formations, !, star, types, surrounding, music, band,
salt, face, wall, concert, bottom, solid, L, volcanic,
sedimentary, gardens, walls, for, mass

gist(sense 4): on, rock, to, as, a, like, down, upon, up,
START , sat, against, not, between, was, flat, large,

sitting, from, I, He, began, this, struck, behind, firm,
his, head, built, big

(i) stoned - outcomes
gist(sense 1): death, to, be, by, being, must, they, have,
would, notice, been, care, hardly, until, a, eyeballs, de-
serve, in, ;, ., for, were, gills, will, Stephen, risk, as,
little, should, END

gist(sense 1): too, me, deserving, notice, care, eye-
balls, deserve, been, we, death, heels, to, ., END ,
have, whole, centre, gills, ’, asunder, would, sawn,
eyes, move, actually, one, had, Saint, ’d, be

gist(sense 2): again, up, him, speakers, woman, boys,
stones, upon, patches, newly, with, :, yet, cobble, see,
away, maybe, from, one, but, had, is, who, camp, the,
streets, an, never, home, another

gist(sense 3): again, up, until, see, speakers, yet,
maybe, away, camp, with, heels, from, repeatedly, had,
eyes, upon, woman, home, –, mile, ordinary, ’, hardly,
their, helms, Christians, men, what, way, been

(j) paste - outcomes
gist(sense 0): tomato, 1, on, 2, tablespoons, table-
spoon, Add, tomatoes, it, them, (, ), sauce, be, applied,
another, teaspoon, contents, cup, your, salt, ,, curry,
sesame, The, in, cook, Stir, puree, wine

gist(sense 0): 1, on, it, tablespoons, 2, tomato, table-
spoon, up, them, ), (, be, applied, your, contents, an-
other, teaspoon, into, cup, sesame, salt, used, the, in,
text, The, ,, sauce, is, cook

gist(sense 1): smooth, make, form, a, with, thick, made,
cement, of, END , ., porcelain, thin, water, soft, stiff,
fine, mixed, flour, hardened, by, hard, ;, up, consis-
tency, forms, baking, little, like, Make

gist(sense 2): smooth, a, make, form, thick, with, made,
of, porcelain, cement, thin, ., END , water, soft, stiff,
fine, mixed, hardened, hard, by, consistency, to, flour,
forms, little, Make, like, ;, until

Table 6.29 – continued from previous page – For EM and Gibbs sampling word distributions θθθ k,
the top 30 gist words of non-neologism senses for targets mouse, surf, gay, bit, boot, compile,
strike, rock, stoned, paste (a-j) ranked by comparing word distributions to corpus Probabilities.

citation dates (1909, 1919), for the period chosen (1950–2008), it seems these senses were in

existence prior to the period chosen. For the other targets a similar process was followed con-

sidering the senses identified in the OED and their first citation dates. For the targets which

were anticipated to be ambiguous, the OED confirms them to be so and with the anticipated
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Target Years Lines
ostensible 1800-2008 130k
present 1850-2008 56333k
cinema 1950-2008 305k
promotion 1930-2008 1681k

Target Years Lines
theatre 1950-2008 1125k
play 1950-2008 13726k
plant 1900-2008 8175k
spirit 1930-2008 11573k

Table 6.30 – Google 5 gram dataset - the table has the targets for non-neologisms

senses having an emergence pre-dating the time periods chosen, often drastically so. For ex-

ample, play was chosen as a non-neologism target, with time period 1950–2008. Among the

OED’s noted senses for play are: ‘a theatrical performance’, ‘engage in fun’, ‘take part in a

sport’, ‘to perform on a musical instrument’, all with citation date indicating them to have been

in use for many centuries. Being a dictionary that aims to be as comprehensive as possible6,

its sub-division of a word into separate senses is probably more fine-grained than any other

dictionary. Given this it is not surprising that there are targets from Table 6.30 such that in the

OED’s long enumeration of senses there do occur senses with first citation dates indicating an

emergence within the time period chosen. For example, for play it notes a sense ‘The control

on a tape player, video recorder, etc., used to initiate playing.’ with first citation date of 1978.

It seems a safe assumption that this sense is considerably less frequent than the earlier noted

senses, though this assumption has to rest on intuition, as the OED gives no sense frequency

statistics. Modulo this caveat concerning some likely to be infreqent senses, consultation of

the OED seems to confirm that the targets given in Table 6.30 can serve as examples of words

which do not exhibit sense emergence in the time periods indicated.

There was an initial testing of the non-neologism targets, with the number of senses set to

2 or 3. This setting was not very systematic but roughly followed an intuition of assigning 3 to

those anticipated to be more ambiguous and 2 to those thought to be less ambiguous. As this

initial test was somewhat unsystematic a subsequent round of tests was done, this time setting

the number of senses to 5 for all targets, which one would expect to increase the possibility of

inferring a sense emergence.

Figure 6.20 shows the outcomes from the initial tests. For each target and for each its

senses, the time-line via EM and GS of the sense probabilities πππ t [k] was assessed using the

emergence time detection method which was discussed in section 4.1.4. Recall that this returns

an empty set of times if no emergence time is detected. For all of the 8 non-neologism targets

an empty set is returned for all senses, indicating no inference of a sense emergence.

Figure 6.21 shows the outcomes K was set to 5 for each target. Again for each of the 5

senses, the time-line of the sense probabilities πππ t [k] was assessed using the emergence time

detection method. In this case for 7 out of the 8 non-neologism targets. However, for the

target promotion this did not happen. For the EM outcomes sense 3 returns an emergence time

of 1974, and sense 4 returns an emergence time of 1941, neither of which was an expected

result. For the GS outcomes, only sense 4 returns an emergence time of 1948 and is still not an

expected result as with the EM outcomes. Tables 6.31 and 6.32 gives the gist words for these

6Its printed edition runs to 20 volumes
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Figure 6.20 – For plots (a-d), the first and second columns show the outcomes of EM and Gibbs
sampling algorithm’s inferred πt [k] sense parameter outcomes for ostensible, cinema, present, pro-
motion non-neologism targets – (e-h) continued in the next page.
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EM outcomes GS outcomes
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Figure 6.20 – For plots (e-h), the first and second columns show the outcomes of EM and Gibbs
sampling algorithm’s inferred πt [k] sense parameter outcomes for theatre, play, plant, spirit non-
neologism targets.
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Figure 6.21 – For plots (a-d), the first and second columns show the outcomes of EM and Gibbs
sampling algorithm’s inferred πt [k] sense parameter outcomes for ostensible, cinema, present, pro-
motion non-neologism targets – (e-h) continued in the next page.
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EM outcomes GS outcomes
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Figure 6.21 – For plots (e-h), the first and second columns show the outcomes of EM and Gibbs
sampling algorithm’s inferred πt [k] sense parameter outcomes for theatre, play, plant, spirit non-
neologism targets.
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senses.

gist(sense 3): prevention, disease, protection, health,
human, rights, maintenance, education, Health, and,
mental, , public, programs, illness, preservation, for-
mation, care, development, sale, planning, new, ser-
vices, encouragement, National, family, democracy,
practice, control, implementation

gist(sense 4) neologism: advertising, ,, sales, hiring,
), distribution, (, transfer, training, or, over, passed,
price, pay, pricing, tenure, place, appointment, job,
marketing, recruitment, he, product, publicity, selling,
employment, salary, selection, raise, demotion

Table 6.31 – For the EM outcomes, top 30 gist words for the target promotion ranked by comparing
word distributions to corpus Probabilities are shown

gist(sense 4): sales, distribution, advertising, transfer, training, or, price, hiring, tenure, pricing, pay, place,
job, marketing, publicity, product, selling, creating, salary, substitution, import, raise, demotion, appoint-
ment, recruitment, employment, relations, firing

Table 6.32 – For the GS outcomes, top 30 gist words for the target promotion ranked by comparing
word distributions to corpus Probabilities are shown

The OED identifies one sense of promotion as ‘action of helping forward’ and the gist words

for sense 3 (EM) seem mostly consistent with that sense. It also identifies the more specific

sense of ‘publicizing of a product’. The gist words for sense 4 (EM and Gibbs) are arguably

more closely related to that sense than those for sense 3. The OED’s first citation date for

the ‘action of helping forward’ sense is 1425, and for the ‘the publicizing of a product’ sense

it is 1914. So concerning the inferred sense 3, the OED has nothing suggesting a language

change which would be consistent with the trend found for sense 3 with an emergence time of

1974. Perhaps the cause of the trend detected is not language change but changes in opinion or

changes in the world, concerning what things are subject to the ‘action of helping forward’ –

in section 6.6 some further cases of this kind are discussed. For sense 4 it is perhaps possible

that the first citation date of 1914 for the publicity related sense is substantially earlier than its

genuine emergence in the corpus, but we have no ready means to confirm such a speculation.

6.5 Discriminating neologism vs non-neologism targets

As a further test, a scoring mechanism introduced by Lau et al. [2012] called ‘Novelty score’

is adapted for this thesis work in ranking the neologism targets. The novelty score introduced

by Lau et al. [2012] is given by the novelty ratio in equation 6.1.

NoveltyRatio =
Pf (s)
Pr(s)

(6.1)

In equation 6.1, Pf (s) and Pr(s) are the inferred proportion of usages of a target T corre-

sponding to sense s in the focus corpus and reference corpus, respectively – these corpora come

from two different times E2 and E1. For a target, the maximum score computed from all the

inferred senses is the ‘novelty score’ assigned to the target. They compute this score for all the

targets considered for experiments and rank the targets based on the score in descending order

and from this, the actual ‘neologism’ targets are expected to appear in the top of the table. As
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we did, they had both positive and negative targets. Without a time-line their evaluation cannot

be a comparison of true and inferred emergence date and instead they count success as a ten-

dency to place positives above negatives when ranked by the ‘novelty’ score provided in equa-

tion 6.1. They obtain thus a ranking on their targets: { domain(116.2), worm(68.4), mirror(38.4),

guess(16.5), export(13.8), founder(11.0), cinema(9.7), poster(7.9), racism(2.4), symptom(2.1) } (with

positive targets in bold and negative in italics).

target tmin tmax sense score
strike 1803 1982 1 4.69865630943e+113
gay 1943 1997 2 9.14862673074e+69
mouse 1957 1995 1 1377.22470581
surf 1952 2002 3 177.243962439
compile 1954 2000 2 67.4743999785
stoned 1941 1978 3 49.996
bit 1933 1992 2 14.0752091571
boot 1921 2003 3 11.7516786517
paste 1955 2002 2 8.39170393601
rock 1932 1999 0 7.56358762852

ostensible 1815 1986 1 5.14868205866
plant 1902 1994 1 1.82944466751
play 1951 1990 1 1.82368869791
present 1901 1971 0 1.38457323655
promotion 1943 1984 1 1.25953397144
cinema 1963 1981 1 1.24805948421
theatre 1953 1999 1 1.11539934388
spirit 1943 1997 0 1.02329509604

Table 6.33 – Novelty scores for the neologism and non-neologism targets based on the EM inferred
πt [k] sense parameter outcomes.

target tmin tmax sense score
stoned 1928 1978 2 103993.451627
strike 1825 1984 2 5442.70895335
gay 1946 1997 2 2791.15008492
mouse 1959 1995 1 1485.97820555
surf 1958 2002 4 156.734009886
compile 1954 2002 2 26.6235467848
bit 1933 1992 2 10.0206427976
paste 1951 2003 1 7.50601173275
rock 1932 1999 1 7.40120508635
boot 1924 2003 2 7.05613461148

ostensible 1803 1940 1 3.53971281131
plant 1902 1994 1 1.89215339136
play 1951 1990 1 1.86010084371
promotion 1932 1995 1 1.40545596937
cinema 1963 2006 1 1.36194139893
theatre 1989 2008 1 1.15514153993
spirit 1943 1999 0 1.0233877599

Table 6.34 – Novelty scores for the neologism and non-neologism targets based on the Gibbs
sampling inferred πt [k] sense parameter outcomes.

As they have considered just two times – a focus and reference corpus from later and

earlier times respectively, but for the current work a long time period is considered, therefore

to compute such novelty scores, a slightly modified version of the Novelty score shown in

equation 6.1 is followed. To compute this, consider tmin and tmax to be the values of time t
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where the inferred sense parameter πt [k] is the ‘minimum’ and ‘maximum’ values for the sense

k. Then the novelty ratio is defined to be:

NoveltyRatio =


tmax
tmin

(if tmax is later than tmin)
tmin
tmax

(if tmin is later than tmax)
(6.2)

From the computed NoveltyRatio for all senses K of target T , the highest score is considered to

be the ‘Novelty’ score for T – this way, the novel sense is also identified.

Tables 6.33 and 6.34 provides the list of targets considered for the ‘actual’ neologism and

non-neologism EM and Gibbs experiments in which they are ranked in descending order based

on the novelty scores computed from the EM and Gibbs inferred πt [k] outcomes. The second

and third columns shows the tmin and tmax ie., the earlier and later dates, considered for comput-

ing the NoveltyRatio. Further, it can be seen from the tables all the ‘actual’ neologism targets are

on the top of the table, while the non-neologisms in the bottom (ranked based on the novelty

score in descending order). It can be noticed from the ranked outcomes that the proposed new

metric in equation 6.2 works better than [Lau et al., 2012]’s proposal. This way, the current

thesis work in identifying the neologistic sense further confirms with other testing standards.

6.6 Neologisms which were undetected

Until now the success of the ‘expected’ outcomes for a set of neologism and non-neologism

targets were discussed in sections 6.3 and 6.4. In this section the unsuccessful attempts to

find ‘neologism’ sense from targets which are expected to have an emerging sense is reported.

Table 6.35 show details for the targets7 hip, export, mirror, domain, high which are expected to

have a neologism sense, where the ‘Exp. new sense’ column refers to the expected neologism

usage of the corresponding target and the other columns are similar the columns provided in

table 6.5.

Target Years Lines Min Occs Max Occs Exp. new sense Vocab size
hip 1851-2008 814k 734k 3673k trendy (or) stylish 2696
export 1970-2008 1415k 1193k 5967k convert file format 4323
mirror 1970-2008 1444k 1710k 8554k store copies of data 4874
domain 1970-2008 1586k 1989k 9949k suffix of internet address 7239
high 1930-2008 43764k 40551k 202755k drunk 34937

Table 6.35 – Google 5 gram dataset - the table provides the information for targets that are neolo-
gisms

EM experiments were conducted on the targets hip, export, mirror, domain, high expecting

a neologism sense, the details of the experiments are presented in the following sections.

7Explicit dictionary definitions and citation informaton from the online Oxford English Dictionary (OED) for
the chosen targets are provided in the appendix A.1
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6.6.1 hip

With the OED date for hip in ‘stylish’ sense found to be in 1904, the dataset between years

1851 and 2008 was considered in an attempt to identify the neologistic sense using the EM

inference procedure. The EM experiments were conducted on 3, 4 and 5 sense settings. With

a 3-sense setting the neologism sense was not discovered, however with 4 and 5 sense settings

the EM seems to have discovered an emerging sense – this is provided in figure 6.22.
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Figure 6.22 – The first, second and third plots show the EM inferred πt [k] sense parameter out-
comes for hip experiment with 3, 4 and 5 sense settings.

The EM experiments were conducted after seeing the expected sense emergence trend in

the Google n-gram viewer. Figure 6.23(a) shows the plots for very, young, not, really, people,

guy – words that occur with hip as a 2-gram where there is an increase in probability around

1960 and a fall-back in 1980. This trend is seen in the EM outcomes, however the top 30 ‘gist’

words for the emerging senses (from 4 sense and 5 sense setting experiments) provided in the

table 6.36 do not suggest the ‘stylish’ usage of the word hip rather suggests a ‘surgery’ usage

of the word.

gist words - 4 senses gist words - 5 senses
gist(sense 0) emerging: total, replacement, arthro-
plasty, after, END , patients, fracture, surgery, .,
), fractures, (, elderly, :, undergoing, following, for,
women, replacements, Total, children, revision, spica,
prosthesis, thrombosis, in, a, ;, or, roof

gist(sense 0) emerging: total, replacement, arthro-
plasty, fracture, after, patients, fractures, surgery, for,
:, elderly, risk, a, undergoing, following, replacements,
Total, women, with, revision, spica, prosthesis, throm-
bosis, factors, in, elective, (, ), arthroplasties, cast

Table 6.36 – Top 30 gist words for the target hip with emerging sense, ranked by comparing word
distributions to corpus Probabilities for the EM-outcomes with 4 and 5 sense settings

However figure 6.23(b) showing the ‘tracks’ for such words very, young, not, really, people,

guy that we expect were associated with a new sense referring to ‘very fashionable’ but do not

show such an emerging trend as can be seen in the ‘Ngram-viewer’ plot. From the ‘tracks’

legend, it can be seen that the words really, guy occurs zero times in the dataset, while the

words very, not do not see any upward trend rather very noisy and the word young, people

lonely show an upward trend around 1965 and 1975 and does not fallback around 1980 as
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it did for 1980. From this it seems that the ‘trendy’ sense for hip is scarcely present in the

5-grams. Therefore Gibbs sampling experiment was not conducted for this target.

One may wonder why there is a change in trend between the Ngram-viewer’s ‘tracks’ and

the ‘tracks’ made from the 5-gram dataset – for Ngram-viewer plot we have considered 2-

grams (i.e., 2 words that occur together) so such 2-grams may not occur in 5-grams more than

40 times in the corpus for them to have gained entry into the 5-grams dataset and this could the

reason for the words really, guy to have zero probabilities in the ‘tracks’ plot.
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(c) hip - ‘tracks’ original
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Figure 6.23 – The plot (a) shows the n-gram viewer ‘tracks’ for 2-grams and plot (b) shows proba-
bilities normalized ‘tracks’ for some words that we expect to be associated with the ‘trendy’ sense
of hip (c) shows the probability (un-normalized) ‘tracks’ for words that we expect to be associated
with the ‘trendy’ sense of hip

Now it is clear that the emerging sense found from the inferred plots is not associated with

a language change, rather this is a good example of world change – around 1970, ‘hip surgery’

and ‘hip replacement’ procedures were modernized8 and so usage of such words would have

been prevalent, to see such a trend in the ‘EM inferred’ plots. Additionally the 5-gram “total

hip arthroplasty in young” occurs over and over in years between 1978-2008, which is the title

of a frequently cited paper. All this relates to the fact that this 5-gram dataset does not have

‘trendy’ or ‘stylish’ related sense of the word hip.

6.6.2 export

Figure 6.24 shows the EM inferred outcome and ‘tracks’ plot for the target export – (a) shows

the inferred sense parameter πt [k] plot for the target export with a 5-sense K = 5 setting: from

the plot it seems the EM did not discover a neologism sense. However a ‘tracks’ plot was

made data, file, application, program, PDF, HTML, as, format words that we expect to be

associated with ‘convert file format’ usage of the word export – tracks for the normalized and

un-normalized probabilities are provided in figures 6.24(b) and (c). The words pdf, html when

looked in the un-normalized plot, it can be seen that they occur zero times, however from

the normalized plots (with smoothing) one can see the tracks for the words file, PDF, HTML,

8see https://en.wikipedia.org/wiki/Hip_replacement

https://en.wikipedia.org/wiki/Hip_replacement
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Figure 6.24 – Plots (a) shows the EM inferred πt [k] sense parameter outcomes for export exper-
iment with 5 sense settings (b) shows probability ‘tracks’ for some words that we expect to be
associated with ‘convert file format’ usage of the word export that are normalized between 0 and 1
and plot (c) shows the ‘non-normalized’ version of (b).

format – these have climbing trends emerging between 1985 and 1995. The word data has a

climbing trend from 1970 onward but that is also likely to occur with other senses. Also, when

looked into the un-normalized plot, file is the only word that has non-zero probability other

than data. With these arguments, it is clear that the 5-gram data does not have ‘convert file

format’ related sense of the word export.

6.6.3 mirror

Figure 6.25 shows the EM inferred outcome and ‘tracks’ plots for the target mirror. The plot in

figure 6.25(a) shows the inferred sense parameter πt [k] plot for the target mirror with a 5-sense

K = 5 setting: from the plot EM seems to have not found the expected emerging sense ‘to store

a copy of data’. This is not an expected outcome, so the ‘tracks’ plot for site, ftp, download,

choose, internet, copy, server – words that we expect to be associated with ‘store a copy of

data’ usage is provided with and without normalization in figures 6.25(b) and (c). For the

words ftp, FTP, download, choose, Internet, internet, both the normalized and un-normalized

‘tracks’ plots show zero occurrence, while for the words site, copy, server there is non-zero

probabilities but they again do not show emergence from a unanimous time. This makes it

clear that the 5-gram data set does not have enough ‘store a copy of data’ related sense of the

word mirror.

6.6.4 domain

Figure 6.26 shows the EM inferred outcome and ‘tracks’ plot for the target domain. The plot in

figure 6.26(a) shows the inferred sense parameter πt [k] plot for the target domain with a 5-sense

setting: from the plot EM seems to have found two emerging senses πt [k = 0] and πt [k = 3],

and for these senses, the top 30 ‘gist’ words such as binding, terminal, windows, Active, Direc-

tory suggest these senses are related to the ‘suffix of internet address’ usage of domain (these
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Figure 6.25 – Plots (a) shows the EM inferred πt [k] sense parameter outcomes for mirror exper-
iment with 5 sense settings (b) shows probability ‘tracks’ for some words that we expect to be
associated with ‘store copies of data’ usage of the word mirror that are normalized between 0 and
1 and plot (c) shows the ‘non-normalized’ version of (b).

are provided in table 6.37). However, there are a lot words such as DNA, transmembrane,

knowledge, tyrosine, amino that do not seem especially associated with the ‘suffix of internet

address’ are also seen in the top 30 ‘gist’ words for both senses. However the tracks in
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Figure 6.26 – Plots (a) shows the EM inferred πt [k] sense parameter outcomes for domain exper-
iment with 5 sense settings (b) shows probability ‘tracks’ for some words that we expect to be
associated with ‘suffix of internet address’ usage of the word domain that are normalized between
0 and 1 and plot (c) shows the ‘non-normalized’ version of (b).

gist words - sense 0 gist words - sense 3
gist(sense 0) emerging: -, binding, terminal, spe-
cific, DNA, C, level, N, Windows, (, top, single, lig-
and, time, –, The, kinase, :, ), Directory, Active, NT,
protein, transmembrane, knowledge, tyrosine, 2000,
amino, activation, like

gist(sense 3) emerging: name, controller, which, can,
as, qualified, it, you, or, names, such, be, (, is, a, ,,
fully, one, that, for, but, there, may, IP, set, they, by,
your, well, another

Table 6.37 – Top 30 gist words for the target domain with emerging sense, ranked by comparing
word distributions to corpus Probabilities for the EM-outcome with 4 sense settings – for seemingly
emerging senses (0 & 3)

figures 6.26(b) and (c) show the normalized and un-normalized probabilities of name, naming,
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Figure 6.27 – Plots (a) shows probability ‘tracks’ for some words from ‘gist’ that are not relevant
to ‘convert file format’ usage of the word domain that are normalized between 0 and 1 and plot (c)
shows the ‘non-normalized’ version of (a).

service, lookup, server, controller, controllers, windows, linux words conditioned on domain,

that we expect to be associated with ‘suffix of internet address’ usage of the word domain. The

normalized tracks in (b) shows increase in probabilities between years 1990 and 2007, how-

ever the un-normalized tracks in (c) show close to zero occurrence for words naming, service,

lookup, windows, linux, and very small probabilities for words server, controller, controllers.

The word name may occur with other usage possibilities as well.

On further looking into the ‘tracks’ (shown in figure 6.27) for the words DNA, transmem-

brane, knowledge, tyrosine, amino that are not related to the ‘suffix of internet address’ usage

of the target, they show an increase around 1988, the same time the associated words found

an increase. However, the un-normalized plot in figure 6.27(b) shows higher probabilities for

such un-related words, which makes it clear that the 5-gram data does not have enough ‘suffix

of internet address’ related sense of the word domain and the emerging senses seen in the EM

inferred plot is the result of the increase in the probabilities of the un-related words seen in

‘tracks’ of figure 6.27.

6.6.5 high

The word high has a new found sense to mean ‘in inebriated state’ – expecting such a sense to be

identified from Google 5-grams dataset, the EM experiments were conducted. Figure 6.28(a)

shows the EM inferred outcomes of sense parameters πt [k] with 5 sense K = 5 settings, however

the top 30 ‘gist’ words provided in table 6.38 do not suggest any word that are associated with

the expected ‘in inebriated state’ usage of the word high. The words such as pressure, speed,

gist words - 5 senses
gist(sense 2) emerging: -, pressure, speed, blood, risk, tech, energy, heat, quality, frequency, pitched, –, ranking,
resolution, medium, performance, technology, rise, voltage, density, over, fat, low, grade, dose, temperature, diet,
water, strength, income

Table 6.38 – Top 30 gist words for the target high with emerging sense, ranked by comparing word
distributions to corpus Probabilities for the EM-outcomes with 5 sense settings
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Figure 6.28 – The first and second plots show the EM inferred πt [k] sense parameter outcomes for
high experiment with 3 and 5 sense settings.

risk, energy, frequency are mostly related to the ‘scientific’ usage of the word high and there are

in not relevant to the expected neologism usage ‘to be in inebriated condition’. The ‘tracks-plot’

in figure 6.28(b) for get, marijuana, adrenaline, cocaine, drug, drugs – words that expect to

be associated with the ‘in inebriated state’ usage show an increase in usage for the most words

marijuana, adrenaline, cocaine, drug, drugs between the years 1958 and 1970. However the

actual occurrence of these words lie close to zero in the ‘tracks’ shown in figure 6.28(c) – the

plot made out of actual probability values. Additionally, the word get seems to have got high

occurrences and it is likely to occur with the other senses of the word high. This makes it clear

that the 5-gram data set does not have enough ‘in inebriated state’ related sense of the word

high.

6.7 Further model tests

In section 6.2, there was a discussion on the pseudo-neologism tests conducted to establish

the fact that the model has the ability to discriminate senses over time to identify the expected

neologism sense. After conducting all the experiments proving the model can identify the

expected neologism sense from the actual targets in sections 6.3, 6.4 and 6.6, now it is important

to establish the role of the data set in the model’s ability to identify the neologistic sense – this

is discussed in ‘ablation’ section 6.7.1. All the neologism experiments were conducted with

manual sense assignments for K (number of senses), however this manual intervention can be

eliminated by inferring the number of senses required to identify the neologism sense – for

this ‘Merge tests’ were conducted and a discussion on this is provided in section 6.7.2. This

suggests just an approach to infer the number of senses. An adaptation of the approach used

by Cook et al. [2014], Lau et al. [2012] to rank all the targets in identifying the targets with

neologistic ones is provided in section 6.5.
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6.7.1 Ablation tests

It is interesting to know the impact of the data (size) on the estimation procedures used on the

‘diachronic’ model. This is looked at with ‘ablation’ tests, where the data is made successively

smaller. The idea here is to see (i) does the outcome remain roughly the same as the data is

reduced (ii) what is the minimum amount of data required for the model to infer the neologism

sense? For this kind of test, mouse dataset between 1970 and 2008 with ∼ 813k data items

was considered. Based on run-time considerations (discussed in section 6.3.1), these tests were

conducted using EM algorithm. For the test set-up, consider the mouse data-set of varying

quantities and visualize (as plots) the outcomes of the EM to see the impact of the model has

over the change in data quantities. It is expected that as the amount of data is reduced, the

smoothness in the sense parameters πt [k] are reduced.

To make a succession of reduced data sets the following was done. A random shuffle

of the complete data set (813k data items) between 1970 and 2008 was made. Then for a

succession of percentages p, the first p% of that permutation defines the subset. This was done

for the percentages 75%,60%,45%,30%,15%,5%,2% and 0.5%. This should roughly ensure

that each year’s data gets equally reduced. On each subset the EM estimation was run. Figure

6.29 shows the plots of the ablation test outcomes. In each plot and for each sense k, the single

solid line shows the sequence of estimated πt [k] from time t.

From the plots it can be seen that as the data size is reduced between experiments, only

subtle changes are seen. It can be noticed that after reducing the input data size to 15%, the

smoothness in the neologism sense πt [k = 1] looks unchanged, but the other senses seems to

have started losing their smoothness. Even with just 2% of the data (ie., ∼ 16k data items),

the neologism sense can be identified but with some jaggedness. However as the data size is

reduced further to 0.5% of the original size with ∼ 4K data items, the EM experiment plot

provided in figure 6.29(h) did not find the neologism sense. This test establishes a point that

we need at least ∼ 16k data items to see a neologism sense for a 3 sense variant for 39 years

with an average of ∼ 410 items per year. But the number of data-items in each year is different

with a minimum number of 160 data-items in year 1971 and a maximum number of 643 items

identified in year 2004.

6.7.2 Merge tests

The number of senses required to discover a neologism sense may vary depending on the data

and its size. Further, it is also noteworthy that the model may discover a sense that a human

may not expect such a discovery. Consider the EM outcomes for the target boot (section 6.3.8),

where the model discovered the neologism sense with 5 sense setting (K = 5) (the ‘gist’ words

for the neologism sense k = 3 is provided in table 6.22 and the gist words for other senses are

provided in table 6.29(e)). In this, the model seems to have inferred a leather sense k = 0 and

shoe sense k = 2 of boot, which a human would interpret them to be one sense as k = 0 is a

mild variant of the k = 2 – for a human this is unexpected. In an attempt to infer the number of
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(a) mouse on 75% data
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(b) mouse on 60% data
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(c) mouse on 45% data
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(d) mouse on 30% data
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(e) mouse on 15% data
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(f) mouse on 5% data
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(g) mouse on 2% data
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(h) mouse on 0.5% data

Figure 6.29 – Ablation test outcomes on mouse dataset – plots from (a-h) shows the EM outcomes
from 75%,60%,45%,30%,15%,5%,2% and 0.5% of the complete dataset between the years 1970
and 2008.
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senses required by EM, we conduct this merge experiment where such sense distributions may

be merged to still get the neologism sense at K−1 senses.

EM algorithm being sensitive to initializations (Biernacki et al. [2003], Yang et al. [2012]),

there is a possibility that we can merge two inferred sense distributions πππ t [k] of sense k and

inferred word distributions θθθ k of sense k based on the distances between different senses of

inferred θθθ k distribution and the merged sense πππ t [k] and θθθ k word distributions can be used

to initialize the respective parameters for a new EM run. To get the distances among all the

senses K of θθθ k distributions, ‘Kullback Leibler divergence’ (KL-div) distance metric was used.

From the KL-div distances, the closest two sense distributions are merged. Merging the sense

distributions is done the following way: Consider the total number of senses to be K = 3 from

{k0,k1,k2} with k0 a neologism sense and we want to merge k1 and k2 of πt [k] distributions,

now the new πt [k1] will be,

new πππ t [k1] = πππ t [k1]+πππ t [k2]

new πππ t [k0] = πππ t [k0]

Similarly, θθθ k parameters can be merged as below

new θθθ k1 = 0.5× (θθθ k1 +θθθ k2)

new θθθ k0 = 0.5× (θθθ k0 +Pcorp)

It would be interesting to see that when EM is run with these initializations deriving from a

merge of two close senses, the previously detected neologism sense is preserved.

For this kind of testing, the inferred outcomes surf (section 6.3.7) has been considered.

From the inferred EM outcomes the KL-div distance between the inferred θθθ k distributions of

surf are computed and provided in table 6.39. Based on the KL-div distances, ‘hierarchical’

clustering9 was used to find the closest sense distributions as the numbers provided in the table

may not just be apparent to human interpretation.

k0 k1 k2 k3 k4

k0 0 5.81866 5.01205 5.46880 5.61781
k1 5.81866 0 2.75820 5.95901 4.28056
k2 5.01205 2.75820 0 6.70997 3.00419
k3 5.46880 5.95901 6.70997 0 8.12131
k4 5.61781 4.28056 3.00419 8.12131 0

Table 6.39 – KL-divergence (symmetric) distance between inferred θθθ k distributions for surf

The hierarchical cluster plot for surf is presented in figure 6.30. From the plots it can be

visually seen from the RHS plot that (i) ‘s1’ referring to k1 and ‘s2’ referring to k2 are closer,

similarly (ii) senses k1, k2 are closer to k4. As discussed earlier, it is apparent to human intuition

that k1 and k2 are close as they both seem to be related to water sport related sense. So we first

merge the senses in (i) and attempt an EM run to see the new outcomes. Based on merging

9For hierarchical clustering, R’s ‘cluster’ package and ‘agnes’ method was used.
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the senses for the current parameter estimates, the new sense numbers are allocated as per the

table 6.40, where the sense numbers allocated after the first level merge are provided – here k0

is repeated for the merged senses, similarly details on the second level merge is also provided

in the table.
Hierarchical clustering
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Figure 6.30 – Hierarchical cluster plots based on KL-divergence distances between θθθ k distributions
for surf. The sense numbers are represented as s0, . . . ,s4 and the height provided in the plot gives
the distance between the clusters.

inf senses 1st merge 2nd merge
k0 k1 k1
k1 k0 k0
k2 k0 k0
k3 k2 k2
k4 k3 k0

Table 6.40 – Sense numbers allocated based on merging inferred θθθ k distributions for surf – see
text for further details.

Figure 6.31 shows the plots based on the initializations from merging the senses (here

senses k1 and k2 are merged to k0 and k3 the neologism sense [as can be seen from the first

plot of figure 6.13] is assigned to sense k2) and inferred sense distributions πt [k] from EM. The

inferred sense distributions πt [k] seems to have learned the sense distributions very close to the

initialized distributions. Additionally, a second level merge is also done and the initializations

from this merge are provided in figure 6.32. The inference procedure seems to have the learned

the sense distributions again very close to the initializations from the second merge, however

it is still not very clear to whether the learned distributions are still right – this can be verified
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with the ‘gist’ words.
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Figure 6.31 – The plots show the initialized and inferred sense distributions πt [k] for the target surf
– shows first level merge
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Figure 6.32 – The plots show the initialized and inferred sense distributions πt [k] for the target surf
– shows second level merge

gist words - EM outcome
gist(sense 0): of, sound, into, out, in, zone, pounding, edge, roar, on, line, beach, crashing, by, thunder,
breaking, ;, beyond, through, ocean, outside, distant, upon, from, shore, clam, along, at, above, noise
gist(sense 1): START , was, as, is, The, hear, so, could, I, which, but, when, high, it, be, can, that,
you, not, too, to, broke, there, no, beat, When, a, If, listening, heavy
gist(sense 2) neologism: Internet, Web, ”, Net, or, for, net, mail, -, web, wind, swimming, fishing,
diving, ’, Wide, World, turf, sailing, ,, skiing, you, to, e, ?, sand, games, scuba, channel, while

Table 6.41 – Top 30 gist words for the target surf ranked by comparing word distributions to corpus
Probabilities, where the word distributions are obtained from the new merged distributions.

Table 6.41 provides the top 30 ‘gist’ words for all the senses learned from the inferred word

distributions θθθ k with 3 senses. The ‘gist’ words for ‘sense 0’ representing k0 unanimously

represents the ‘water sport’ sense of the word surf, however the gist words for the neologism

sense seem to have got rather more unexpected words wind, swimming, fishing, diving, turf,

sailing, skiing, sand, games, channel in the context of ‘exploring internet’ usage – most of

these words are related to the ‘water sport’ usage. Further, a tracks for these words in figure

6.33, these shows the words to have increasing probability of occurrence in the context of

surf in 1960’s and goes up later which can seem to have disturbed the sense inference for the
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neologism sense πt [k = 2] as well.
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Figure 6.33 – The plots show the initialized and inferred sense distributions πt [k] for the target surf
– shows second level merge

The experiment on the target surf is suggestive of a possible approach to the somewhat

unsatisfactory situation that a neologism was sometimes detectable with some larger number

for K, and so possibly with the results that some of the detected sense represent distinctions

a human would make. Through an automated process, having found a neologism at high K,

repeatedly close senses could be merged and EM re-run. If the neologism remains detected

at a lower K then probably the other detected senses will be more intuitive. At the moment

however it is just a conjecture that such an approach would generally work.

6.8 Comparison with the prior work

Prior work in terms of alternative models and algorithms and evaluation procedures has been

described in sections 2.2 and 2.3. As has already been pointed out, due to the different data sets,

targets, approaches to ground truth and evaluation criteria, it is not possible to make direct and

quantitative comparisons of prior work with the results presented in the chapter10 – the closest

we have come to thi was in section 6.5, where we adapted the approach of [Cook et al., 2013,

2014, Lau et al., 2012] of using a ‘novelty score’ to try discriminate between known neologisms

and non-neologisms. There are nonetheless some observations that is seems reasonable to make

in comparing their experimental outcomes to ours.

Recall that in the work of [Cook et al., 2013, 2014, Lau et al., 2012] a LDA/HDP topic

modeling approach. This has the theoretically attractive feature of deciding for itself how many

senses there should be. Whereas in the experiments reported above, the numbers of senses was

between 3 and 5, in the examples which they give in their paper, their algorithm seems to settle

on a somewhat larger number.

Figure 6.34 shows the example ‘cheat’ that has 9 senses, several of them seemingly rather close

(they suggest 1,3 and 4 really represent the same sense), and several seemingly very hard to

interpret. This listing of the terms points out one other contrast that they have used lemmatized

10Frermann and Lapata [2016] make the same point at several points of their paper as well.



6.8. COMPARISON WITH THE PRIOR WORK 129

Figure 6.34 – Screen-shot of Table 2 from Lau et al. [2012] showing top-10 terms for each of the
senses induced by HDP for the word ‘cheat’.

words, position features and syntactic dependencies, whereas the current work uses the raw

text without any processing. In Frermann and Lapata [2016], in the part of the paper where

they do discuss the trajectories obtained for the sense probabilities for certain target words, it

is clear that they ran their experiments also seeking a relative high number of senses, namely

8. The picture below shows their outcome for the target power

and akin to Lau et al. [2012] they suggest that several seem to represent the same sense (eg.

1, 2, 5, and 7 all representing an institutional sense of power). This issue of number of senses

remains a difficult one. Simply looking at the sense emergence issue, a direction for further re-

search is to examine more systematically the effect of the number of senses on the effectiveness

in detecting novel senses.

We have already discussed the theoretical design of model used in Frermann and Lapata

[2016]. Recall that they have a specific prior whose intention is to encourage smooth change.

It seems worth noting that whilst there was no prior used in the proposed EM and Gibbs algo-

rithms to encourage smooth change of the πππ t values, nonetheless relatively smooth change is

obtained, and sense emergence was successively detected in a number of cases. This suggests

that for the n-gram data at least, the more complex system of Frermann and Lapata [2016] is

not required. It may be that they required this smoothing prior because the dataset they used

contains approximately 100 times fewer occurrences for a given target per time-period com-

pared to the n-gram dataset we have used: they used the Corpus of Historical American English

Davies [2010] dataset, and have a time-resolution of 10-year time spans.
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6.9 Discussion

This chapter reported the results obtained using our diachronic model, and the proposed EM

and Gibbs sampling parameter estimation approaches. Besides the preliminary ‘pseudo-neologism’

tests, experiments were carried out on both neologism targets, which were anticipated to show

sense emergence (relative to the period looked at), and also non-neologism targets that were

anticipated to not show semantic emergence.

Summarising the outcomes obtained, we can say that of the 10 neologism targets looked at

section 6.3, all 10 were identified to have an emergent sense (as established according to the

EmergeTime algorithm of section 4.1.4). In 6 out of 10 cases this happened with the number

of senses K set to 3. In the other 4 cases it happened with the number of senses K set to 5.

In all cases the inferred emergence time was later than Dc
0, the OED first citation date, which

was argued to be a minimum requirement on accuracy. We also proposed the ‘tracks’-based

procedure via which to establish C0, the sense emergence date within the corpus, and in all

cases the sense emergence dates which were obtained via the EM and GS unsupervised esti-

mation procedures agreed with ‘tracks’-based emergence date to within 10% of the time-span

considered. So under these two assessments of dating accuracy, in all 10 cases the emergence

date of the apparent semantic neologism was ‘accurate’. There does not seem to have been

other work which is addressed to an extended time-line11 and which attempts in this way to

assess the accuracy of an apparent sense emergence.

If we include the 5 further neologism targets that were discussed in section 6.6, then the

success rate would drop to 2
3 , though as was discussed in section 6.6, there is quite a lot of

evidence that suggests that the anticipated senses are objectively absent from the 5-gram data.

Concerning the non-neologism targets which were looked at in section 6.4, when the num-

ber of senses was set to 2 or 3, in 8 out of 8 cases no neologism was detected, whilst when the

number of senses was set to 5, this happened in 7 out of 8 cases.

For both neologism targets and non-neologism targets it would be unjustified to extrapolate

from these experiments to what might be the success rates with far larger samples of neologisms

and non-neologisms. So no particularly strong claims can be made about the likely success of

a system based on the current model if deployed as the kind of semantic neologism warning

system that was alluded to in section 1.4. All that we can really say is that the method used has

shown some promise.

Two aspects of this probably deserve to be emphasized here. One is that the model made the

strong assumption that senses, seen as probability distributions on context words, be treated as

time independent. It might have been the case that this assumption is completely inconsistent

with the facts of language. The results show, at least for a certain collection of targets, that

this assumption is not completely inconsistent with the facts. A second point is that the 5-

gram data provides only 4 context words around a target. One might also think that such short

contexts would make it impossible to infer useful information – for example Frermann and

11as opposed to large eras
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Lapata [2016] use 10 context words. Again the results show, at least for a certain collection

of neologism targets, that it is possible to make inferences on such a small amount of context.

This may be because of the fact that the Google 5-gram datasets for most of the targets were

large and the number of vocabulary items for each target turned out to be far smaller in number

(this can be seen from table 6.5).

The experiments involved the two parameter estimation techniques, EM and Gibbs sam-

pling. EM should give an estimate which is a mode of a posterior Dirichlet, and the Gibbs

sampling variant should give a mean of a posterior Dirichlet. For the most part, the two meth-

ods gave similar outcomes. On the one hand that fact that when the EM outcome indicates a

neologistic sense it is also the case that the Gibbs outcome does, and vice versa, gives a kind of

reassurance that the one or the other outcome is not a fluke. On the other hand, on theoretical

grounds the EM-based estimate could be somewhat different to the GS-based estimate, and one

might argue the GS-based estimate to be a more motivated one. There were a few indicators

that on occasion the GS approach arrived at more convincingly separated senses but it remains

to be seen whether on a more substantial set of tests a greater difference is found between the

EM and GS outcomes. On grounds of execution time, on the basis of the current test items one

could argue for using just the much faster EM-based approach.

The question of the setting of the number of senses remains unresolved. The merge tests

that were reported in section 6.7.2 looked at one aspect of this. A neologism was detected

at a particular K, and by merging senses which had small Kullback-Leibler divergence, and

re-running EM from a start point defined by the merge, the neologism remained detected at

K − 1. Another aspect of this is the setting of the number of senses so as to most reliably

and accurately identify cases of sense emergence. Roughly speaking, the experiments indi-

cated that with senses in the 3 to 5 range, true semantic neologisms were detected, and true

semantic non-neologisms were identified as such. One possibility following the intuition of the

Kullback-Leibler divergences between the inferred per-sense word distributions might be to do

repetitions of experiments with increasing K while monitoring the divergences and cease to

increase K once components are created with a divergence falling below some threshold. An-

other possibility would be to try an approach which balances the data probability achieved at a

particular K with the model complexity associated with that K, using for example the Akaike

Information Criterion [Akaike, 1974] or a variant of it. These might provide a way to have an

automatic way to have the size of K vary with the target. At the moment this remains a possi-

bility for future work. Besides the additional computational overhead of such an approach, to

draw meaningful conclusions about the success of such strategies will probably require a larger

sample of neologisms and non-neologisms than those that were addressed here.
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Chapter 7

Conclusions and future work

The diachronic model proposed in this thesis (section 3.2) models P(S|Y ) and P(www|S), where

P(S|Y ) represents probability of sense given year and P(www|S) represents probability of context

words given the sense. This is the fundamental contribution made in identifying a ‘novel’

sense from the given dataset containing occurrences of a semantic neologism. The proposed

model is a simple one that has never been previously used for this task, although there are

works (discussed in section 2.2) that use forms of static model without the time dependency

parameter P(S|Y ). It is from this proposal the other contributions of the thesis emerge such

as deriving the parameter updates for EM (section 3.3) and Gibbs (section 3.4) algorithms.

In the area of evaluation, one contribution made here is the proposed use of a ‘tracks’ plot

(section 4.1.3) to find the corpus emergence date. Another contribution in that area is the use

of ‘pseudo-neologisms’.

The proposed model is tested with experiments conducted on a number of semantic ne-

ologisms and non-neologism targets in chapter 6. The simplifying assumptions made in the

model may not have been convincing until the experiment outcomes based on the model are

discussed. Further, the experiments were conducted without any sophisticated data processing

(such as stemming, lemmatization, stop word removal) and the diachronic model is still able

to find the novel sense. Additionally, there were limitations with the data sources – (1) just 4

context words were available with 5-gram data which is considered as a strong limitation (2)

the Google search data set had a number of impurities and limited to a maximum of 100 data

items per year; considering all the said limitations and simplicity in the model, the experiments

showcase nonetheless plausible outcomes. A summarization of the key contributions made in

this thesis and the future work that could be built over these contributions are presented further

in this chapter.

7.1 Summary of the contributions

Diachronic model A generative model P(Y,S,www) = P(Y )×P(S|Y )×∏i P(wi|S) is proposed

in section 3.2, with the terms P(Y ) provides the relative abundance of data items with year Y

133
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in the dataset; P(S|Y ) term represents time-dependent sense likelihood; and ∏i P(wi|S) term

expresses that the context words are independent of time given the target’s sense. The dynamic

nature of this model is given by the P(S|Y ) parameter directly expressing the idea that the

sense varies with time (years). This only model that closely resembles is the recent work by

[Frermann and Lapata, 2016]. Further, this model is a simple one compared to the other works

(section 2.2) that can identify neologism sense.

EM and Gibbs procedure To estimate the model parameters of the proposed diachronic

model, the EM and Gibbs sampling procedures are proposed in sections 3.3 and 3.4 where

the parameter updates are also derived. The EM procedure repeatedly calculates the expected

completions of the incomplete data, and derive new parameters by maximum likelihood es-

timation of the expected completions through E-step and M-step. This provides a one-point

estimate for the parameters. But Gibbs sampling procedure provides a chain of parameter esti-

mates. The idea here is to get the desired posterior distribution after iterating through a number

of sampling steps from the conditional distribution. A one-point parameter estimate is made

by computing a mean of the samples.

Tracks plot For a given target T and a dataset containing the targets (data extraction proce-

dures are discussed in chapter 5), K number of senses are discovered by the EM and Gibbs

procedures. For some sense S = k to be identified a neologism sense, it is expected the values

for P(S|Y ) are close to 0 during the initial period and continue to climb thereafter. To evaluate

the proposed model, the date of emergence C0 of the neologistic sense is identified in the cor-

pus. C0 is the time at which the neologistic sense for the word departed from close to zero and

continued to climb thereafter (section 4.1.1).

To evaluate this, a novel method is proposed using a so-called ‘tracks’ plot (section 4.1.3).

For a target word T , there are words which it is intuitive to expect in the vicinity of T in its

neologistic sense of T , but not in its vicinity in its other senses. The idea behind this ‘tracks’

plot is if the per-year probabilities for such words in the dataset P(w|Y ) are plotted, they are

expected to be at close to 0 during an initial period and take off at C0. To identify C0 from

sense parameters P(S|Y ) and ‘tracks’ we propose an automatic, objective procedure that can

be to calculate an emergence time (if any) from a time series.

As a further level of verification, there is a proposal provided in section 4.1.1 to use the

earliest citation date of the word-sense pair – call this D0
c . Oxford English Dictionary (OED)

records the earliest citation date D0
c of word-sense pairs. These dates are not the same as C0,

and D0
c being the earliest citation date, it is expected that D0

c <=C0. This seems a reasonable

assumption made and the experiment outcomes were assertive about this assumption.

EM and Gibbs sampling experiments on Google 5-gram datasets In chapter 6 the EM and

Gibbs sampling experiments based on Google 5-gram are reported and discussed in detail.

Maximum likelihood and mean estimates were obtained using EM and Gibbs sampling exper-
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iments for all the targets reported in chapter 6. For all the experiments reported in chapter 6,

non-informative priors were used. For most of the neologism targets, the neologistic sense out-

comes of EM closely resembled the Gibbs outcomes. Although the number of senses required

to find the neologistic sense slightly varied for different targets, both algorithms were success-

ful in finding them. Similar experiments were conducted on ‘negative’ targets (section 6.4) –

targets known not to exhibit sense emergence. For them, no novel sense was detected. There

were a few semantic neologism targets for which the model did not discover an expected novel

sense, but there are valid reasons associated with such outcomes and those were discussed in

section 6.6.

Comparisons with prior work The experiments conducted using the diachronic model have

produced convincing outcomes in identifying a neologistic sense. But this does not rule out

other possibilities to approach this task. So relevant comparisons from the prior work are

carried out in section 6.8.

To summarize the model comparisons, it was identified that many of the prior works have

considered one of these two design options: (i) pool all training data together to apply some

form of sense induction algorithm which is time-unaware, then assign the likeliest senses to

examples, and then to finally check for a correlation with time (ii) to separate the data into eras,

perform independent sense induction algorithm on each subset and then seek to consider how

the sense representations from each era may (or may not) be linked to each other.

In terms of the models used for sense induction, many of the works can be classified un-

der two different modeling schemes (i) uses probabilistic generative models (ii) clustering ap-

proaches. The actual approaches used in the prior works are discussed in section 2.2.

With no large scale time-stamped sense-labeled corpora available to find the time at which

a neologistic sense emerged in a particular corpus C0, the approach to ground-truth concern-

ing sense emergence is discussed in section 4.1. Many of the prior works have considered

dictionary first inclusion (section 4.1.2) Di
0 as their evaluation option.

7.2 Future work

Experiments using data from social media The experiments reported in this thesis are based

on Google 5-gram dataset, a digitized books corpus and Google search dataset that comes from

Google time-line search. Google 5-gram dataset has a very formal usage of semantic neolo-

gism targets but it is possible to get data that are more informal in nature from Google time-line

search. This way experiments were carried out on single-word and multi-word targets, but ex-

periments need not necessarily be limited to these. This work can be extended to idioms as

well. For example, the idiom “have bigger fish to fry” in normal language use refers to “have

other big fish to fry”, while the novel sense here would be “to have more important things to

do”. A machine translation engine may just be able to perform a literal translation of the idiom,

and not in the idiom sense. To find novel usages of idioms, it may be a good idea to explore

the data from social media such as blogs and twitter.
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Tests on a different language In this thesis, the EM and Gibbs experiments are reported based

on raw text contexts from English datasets (chapters 6). The outcomes are plausible and the

proposed evaluation also works reasonably well. However, there is a possibility of extending

this work to datasets from different languages and see the impact of diachronic model on mor-

phologically rich languages such as Tamil and Sanskrit (south Asian languages). It may turn

out the model works just as expected as it did on English datasets, however there is also a pos-

sibility that just the raw-text contexts may not be enough for diachronic sense discrimination

in finding a neologistic sense. This work may further require investigating other context possi-

bilities such as morpho-syntactic features.

Using a collapsed Gibbs sampler The current work includes a simple Gibbs sampler con-

structed to estimate the parameters of the diachronic model. In the future work, constructing a

collapsed Gibbs sampler is a possibility. The motivation behind using a collapsed Gibbs sam-

pler is, it is considered to be computationally faster than a simple Gibbs sampler.

Data extrapolation Google 5-gram dataset as discussed in section 5.3, is not really a corpus

but a (per-year) frequency table for 5-gram types that gives time-stamped counts on 5-gram

types arising by sliding a window over the original texts, a window in which a succession of

token sequences appear; basically the window contents will contribute to a count if the tokens

do not span certain boundaries such as sentence or paragraph endings. This way a maximum

of 4 context words are available. Each occurrence of a target word can contribute to 5 different

5-gram counts according to its position in the 5-gram (as each 5-gram come from sliding a

window over original text). The thesis, however, treats all 5-grams featuring a given target as

independent. But there is a possibility that these 5-grams can be pieced together using some

form of extrapolation procedure to get a dataset with longer context around the target. This

way, experiments can be conducted on a dataset with more context and with closer to actual

count of the target from Google’s digitized book holdings.

Language changes may happen with locales Language changes over time are explored in

this thesis, but there is a possibility that languages change also with locales. As an example,

consider the word intimate which provides the sense of ‘in a private relationship’, but this

word takes a predominantly different sense in Indian English to mean ‘to inform in advance’.

With such language changes, one can foresee a mistranslation in SMT systems. This form of

language change over locale can be explored with a joint probability model of locale L, sense

S and contexts www is given by:

P(L,S,www) = P(www|S,L)×P(S|L)×P(L) (7.1)

On the joint probability in 7.1, consider the following conditional independence assumptions
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(i) words W are conditionally independent of locale L and (ii) every word is independent of

each other, to get:

P(L,S,www) = ∏
i

P(wi|S)×P(S|L)×P(L) (7.2)

Having said this, intuition suggests that such a new sense was acquired at some time. These

form of language changes with time over locales can be explored with a joint probability model

of locale L, year Y , sense S and contexts www given by:

P(L,Y,S,www) = P(www|S,Y,L)×P(S|Y,L)×P(Y |L)×P(L) (7.3)

For the joint probability in 7.3, consider the following conditional independence assumptions

(i) words W are conditionally independent of year Y and (ii) year Y is conditionally independent

of locale L, to get:

P(L,Y,S,W ) = P(W |S,L)×P(S|Y,L)×P(Y )×P(L) (7.4)

This can be further reduced, by considering every word is independent of each other to get:

P(L,Y,S,W ) = ∏
i

P(wi|S,L)×P(S|Y,L)×P(Y )×P(L) (7.5)

The parameters in equation 7.5 can be inferred with using the parameter estimation procedures

(EM and Gibbs sampling) already used in this thesis. But the challenge in this further explo-

ration would lie in identifying a suitable dataset that has time-stamped raw text coming from

different locales.
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Appendix

A.1 Sense definitions

For the neologistic senses noted in section 6.3 excerpts from the OED are given below con-

cerning this sense, giving the OED’s definition of the sense and the first of its list of citations.

computer peripheral sense of ‘mouse’
def: A small hand-held device which is moved over a flat surface to produce a corre-

sponding movement of a pointer on a monitor screen or to delimit an area of the

screen, and which usually has fingertip controls to select or initiate a computer

function, or to place a cursor at the pointer’s position.
cit: 1965 W. K. ENGLISH et al. Computer-aided Display Control: Final Rep. (Stan-

ford Res. Inst.) 6 Within comfortable reach of the user’s right hand is a device

called the ‘mouse’ which we developed for evaluation..as a means for selecting

those displayed text entities upon which the commands are to operate.
homosexual sense of ‘gay’

def: orig. U.S. slang. (a) Of a person: homosexual; (b) (of a place, milieu, way of life,

etc.) of or relating to homosexuals.
cit: 1941 G. LEGMAN Lang. Homosexuality in G. W. Henry Sex Variants II. 1167

Gay, an adjective used almost exclusively by homosexuals to denote homosexu-

ality, sexual attractiveness, promiscuity..or lack of restraint, in a person, place, or

party. Often given the French spelling, gai or gaie by (or in burlesque of) cultured

homosexuals of both sexes.
(note: the OED is somewhat tentative about this as the first citation and gives a number

of citations prior to the above (1922–1941), but in parenthesis and with remarks that

they do not feel they are conclusive.)

industrial action sense of ‘strike’
def: A concerted cessation of work on the part of a body of workers, for the purpose of

obtaining some concession from the employer or employers.
cit: 1810 Docum. Hist. Amer. Industrial Soc. (1910) III. 370 The Society, in November

1809, ordered a general strike.
computer related sense of ‘bit’

139
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def: A unit of information derived from a choice between two equally probable alterna-

tives or ‘events’; such a unit stored electronically in a computer.
cit: 1948 C. E. SHANNON in Bell Syst. Techn. Jrnl. July 380 The choice of a loga-

rithmic base corresponds to the choice of a unit for measuring information. If the

base 2 is used the resulting units may be called binary digits, or more briefly bits, a

word suggested by J. W. Tukey.
computer related sense of ‘compile’

def: To produce (a machine-coded form of a program), orig. from existing subroutines

but now from a source program in a high-level language; also, more commonly,

to translate from a high-level source language into machine language, usually by

means of a program written for the purpose.
cit: 1952 Proc. Assoc. Computing Machinery 1/2 UNIVAC compiled the program in

one and one half minutes.
computer related sense of ‘paste’

def: To insert (text or graphics) into a document by copying it from elsewhere in a single

operation.
cit: 1975 Business Week 30 June 82 Hit a button called ‘cut’, and the word or paragraph

disappears. Punch another button labeled ‘paste’ and the paragraph or word is

inserted into the text where the pointer is located.
internet related sense of ‘surf’ has transitive and intransitive entries

def: trans. To visit successively (a series of Internet sites); to use (the Internet); to seek

information about (a topic) on the Internet.
cit: 1992 Re: Size Limits for Text Files? in alt.gopher (Usenet newsgroup) 25 Feb.

There is a lot to be said for..surfing the internet with gopher from anywhere that

you can find a phone jack.
def: intr. To move from site to site on the Internet, esp. to browse or skim through web

pages. Also: to go to a particular website.
cit: 1993 San Francisco Chron. 1 June c1/2 Millions of the world’s most plugged-in

people spend hours each week surfing at near-warp speed on a wave of information

called the Internet.
computer related sense of ‘boot’

def: To prepare (a computer) for operation by causing an operating system to be loaded

into its memory from a disc or tape, esp. by a bootstrap routine; to cause (an

operating system or a program) to be loaded in this way; to load the program on (a

disc) into a computer’s memory. Also to boot up.
cit: 1980 M. E. SLOAN Introd. Minicomputers & Microcomputers vi. 158 We turn

the power knob to on, and depress the control and boot switches. We call this

procedure booting the system . . . The computer is now in the machine language

mode, in which machine language programs can be entered and run.
music related sense of ‘rock’
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def: Originally (also with capital initial): = rock ’n’ roll n. 2a. Now chiefly: a genre of

popular music which evolved from rock ’n’ roll during the mid to late 1960s, char-

acterized by a strong beat, the use of the (esp. electric) guitar, and (esp. initially)

musical experimentation, having a harsher sound than pop and often regarded as

more serious or complex.
cit: 1956 Daily Defender (Chicago) 18 Dec. 14 Easily the most socksational exponent

to hit the byways with ‘Rock’ is Presley.
intoxicated sense of ‘stoned’ has drink-related and drug-related sub-entries

def: Drunk, extremely intoxicated orig. U.S.

cit: 1952 Life 29 Sept. 67/2 Like boiled snails, bop jokes certainly are not everybody’s

dish, but those who acquire the taste for them feel cool, gone, crazy and stoned.
def: In a state of drug-induced euphoria, ‘high’; also, incapacitated or stimulated by

drugs, drugged. orig. U.S.
cit: 1953 H. J. ANSLINGER & W. F. TOMPKINS Traffic in Narcotics 315 Stoned,

under the influence of drugs.
For the words discussed in section 6.6 having a neologistic sense which was undetected

again below there are excerpts from the OED for the anticipated neologistic sense.

stylish sense of ‘hip’ OED identifies this was alternative form of hep and defers to that for the

definition

def: slang (orig. U.S.). Well-informed, knowledgeable, ‘wise to’, up-to-date; smart,

stylish.
cit: 1904 G. V. HOBART Jim Hickey i. 15 At this rate it’ll take about 629 shows to get

us to Jersey City, are you hip?
computer related sense of ‘export’

def: To transmit (data) out of (part of) a computer for processing elsewhere.

cit: 1982 Electronics 10 Mar. 124/1 DJC allows the user of any work station to export

a batch job to the NRM for remote execution.
data duplication sense of ‘mirror’ As first citation does not illustrate network-related usage,

have included one of the later citations from the entry also

def: To write (data) on to two separate devices (esp. two hard disks) simultaneously,

to protect against the possible failure of one; to create (a duplicate disk) in this

manner. Also: to copy (a website) on to a different server
cit: 1993 UNIX World May 120/1 The data is striped to multiple controllers and then

mirrored at each controller.
cit: 1999 Sunday Times 16 May 13 The message..had been ‘mirrored’ – copied onto

other web sites.
network related sense of ‘domain’

def: A subset of locations on the Internet or other network which share a common ele-

ment of their IP address (indicating a geographical, commercial or other affiliation),

or which are under the control of a particular organization or individual
cit: 1982 Z. SU & J. B. POSTEL Request for Comments (Network Working Group)

(Electronic text) No. 819. 1 The name of a domain consists of a concatenation of

one or more ‘simple names’
intoxication sense of ‘high’

def: Under the influence of, stimulated by, an illicit drug or drugs. Frequently with on.
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cit: 1932 Evening Sun (Baltimore) 9 Dec. 31/4 High, under the influence of a narcotic.
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