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1 Introduction

Topic models are the probabilistic models to discover the topics from a collec-
tion of documents. These probabilistic models help in analyzing text from a
large collection of documents and automatically identify the topics from this
collection. Further these probabilistic models do not have any prior informa-
tion on what topics are in the collection such as medical science, computer,
statistics, government, tax, etc., There are different topic models in the state of
the art such as probabilistic latent semantic indexing (PLSI), Non-negative ma-
trix factorization (NNMF) and Latent Dirichlet Allocation (LDA) while LDA is
the most commonly used topic model to discover topics from text. Therefore,
LDA will be studied for this directed studies module. There are two variants of
the LDA (1) by variational approximation and (2) by collapsed gibbs sampling,
which are discussed in detail in this report. The LDA by variational approxima-
tion was originally put forward by Blei et al. [2003], while the variant of LDA
by collapsed gibbs sampling was put forward by Griffiths and Steyvers [2004].
Later on there are many extensions to LDA based on application, introduced
by different researchers such as hierarchical mixture model and continuous time
dynamic topic model.

This report is organized as follows: As an introduction to the discussion on LDA,
dirichlet distribution and its properties are discussed in section 2. In the next
section 3 we will discuss about the LDA in general, and then provide the LDA
inference in section 3.1 and further discuss LDA by variational approximation
in section 3.2 and collapsed gibbs sampling in section 3.4 with their algorithms
provided. The details of the derivations for the update equations used for the
algorithm are provided in the appendix 5. Then we conclude the discussion on
LDA by providing the differences between LDA by variational approximation
and by collapsed gibbs sampling in section 4.

2 Dirichlet distribution

Dirichlet distribution can be considered as the multi-variate generalization of
the ‘Beta’ distribution. The density function of ‘Beta’ distribution is defined by
(1), where x is the random variable and α, β are the parameters.

f(x;α, β) =
1

B(α, β)
xα−1(1 − x)β−1 (1)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is a Beta function.

We can see ‘Dirichlet’ distribution as a distribution over distributions. Let us
consider a vector of random probability distributions X = [x1, x2, . . . , xk] where
∑k

i=1 xk = 1 and is parameterized by α, where α = [α1, α2, . . . , αk]. So, the
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density function of dirichlet is given by

f(x1, x2...xk;α1, α2...αk) =
1

β(α)

k
∏

i=1

xαi−1
i (2)

where,

(1) β(α) =
∏k

i=1
Γ(αi)

Γ(
∑

k
i=1

αi)

(2)
∑k

i=1 xi = 1 and 0 < xi < 1,

(3) Γ(n) denotes the gamma function, which is a generalization of the factorial
function ie., Γ(n) = (n − 1)! The beauty of this generalization is the gamma
function works with n being a real number.

(4) α is a vector of parameters and each value in the vector is greater than 0.

Further in this section, we will now proceed to understand the properties of
dirichlet distribution.

2.1 Properties of Dirichlet

The properties (mean and mode) of Dirichlet distribution are discussed in this
section.

2.1.1 Mean

Before, we write down the expectation or mean of the Dirichlet distribution, we
derive the expectation for Beta distribution as dirichlet distribution is considered
the multi-variate generalization of beta distribution. This proof closely follows
the proof from http://www.statlect.com/beta_distribution.htm

The expectation of a vector of random variables X is given by

E [X ] =

∫ 1

0

xα−1(1 − x)β−1

B(α, β)
x.dx

we define B(α, β)

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

3
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E [X ] =
1

B(α, β)

∫ 1

0

xα(1− x)β−1dx

=
1

B(α, β)

∫ 1

0

x(α−1)+1(1 − x)β−1dx

=
1

B(α, β)
B(α+ 1, β) (by integral representation of beta function)1

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 1)Γ(β)

Γ(α + β + 1)
(from definition of Beta function)

=
Γ(α+ β)

Γ(α+ β + 1)

Γ(α+ 1)

Γ(α)
(re-arranging from previous step)

=
Γ(α+ β)

Γ(α+ β)(α+ β)

Γ(α)(α)

Γ(α)
(gamma’s property Γ(z) = Γ(z − 1)(z − 1))

E [X ] =
α

α+ β

Expectation for Dirichlet: Consider X as a vector of random variables
x1, x2, . . . , xn. Here, we show the expectation or mean of the distribution as

E
k
[x] =

αk
∑

k αk

(3)

This derivation is similar to the one for estimating the Expectation of the beta
distribution.

E [x1] =

∫

x

1

β(α)

K
∏

k=1

xαk−1
k x1.dx

=
1

β(α)

∫

x

K
∏

k=2

xαk−1
k x

(α1+1)−1
1 .dx

1The integral representation of Beta function is provided at

http://www.statlect.com/subon2/betfun1.htm
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consider α′
k 6=1 = αk and α′

1 = α+ 1

E [x1] =
1

β(α)

∫

x

β(α′)

β(α′)

K
∏

k=1

x
α′

k−1
k .dx

=
β(α′)

β(α)
(1)

=

∏K

k=2 Γ(αk)Γ(α1 + 1)

γ(
∑

k αk + 1)

Γ(
∑

k αk)
∏

k Γ(αk)

using gamma’s property Γ(n+ 1) = nΓ(n), we get the following step

E [x1] =
α1

∑

k αk

Generalizing this, we get

E [xj ] =
αj

∑

k αk

2.1.2 Mode

Mode is the value of the distribution where the density is the highest. In other
words, mode is the Maximum A Posteriori (MAP) of the distribution and its
formula for Dirichlet is:

xk =
αk − 1

∑

k(αk − 1)
, when (α > 1) (4)

Here, we first derive the mode for beta distribution and extend it to the dirichlet
distribution as beta distribution is the generalization of dirichlet distribution.
To derive the mode of the beta distribution, we have get the partial derivative
of the density function see equation 1 with respect to x, set it to zero and solve
for x.

∂

∂x
f(x;α, β) =

∂

∂x

1

B(α, β)
xα−1(1 − x)β−1 = 0

Considering the beta function 1
B(α,β) as a constant C,

∂

∂x
f(x;α, β) = C

(

(α− 1)xα−2(1− x)β−1 + xα−1(−1)(β − 1)(1− x)β−2
)

= 0
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= (α − 1)xα−1x−1(1− x)β−1 − xα−1(β − 1)(1− x)β−1(1 − x)−1 = 0

= xα−1(1− x)β−1

[

α− 1

x
−

β − 1

(1 − x)

]

= 0

= xα−1(1− x)β−1

[

(1− x)(α − 1)− (β − 1)x

x(1 − x)

]

= 0

= (1 − x)(α − 1)− (β − 1)x = 0

Now, solving for x, we get

x =
α− 1

α+ β − 2
[Mode of Beta distribution]

We know that α and β are the two parameters of the beta distribution, but
dirichlet distribution has k number of α parameters. Therefore, we can extend
the mode function obtained from the beta distribution as given below

xk =
αk − 1

∑

k(αk − 1)

For dirichlet distribution with (α > 1), the mode will be the maximum value,
but for the distribution with (α < 1), the mode will be the minimum value (as
they would be the stationary points in the distribution).

2.2 Dirichlet as Conjugate prior

By now we know that Dirichlet distribution is a generalization of the beta dis-
tribution. As we use ‘beta’ distribution as prior for binomial distribution, it is
a good idea to use ‘Dirichlet’ distribution as prior for multi-nomial distribution.
Following is the proof to prove multi-nomial and dirichlet distributions form
conjugate prior2. The multinomial distribution is defined by

multi[x; θ] =
(
∑K

k=1 xk)!
∏k

k=1(xk!)

K
∏

k=1

θxk

k (5)

where the parameters θ are the probability values to get into one of the K-
categories.

2A conjugate prior of a likelihood function is the prior when both posterior and prior

distributions are of the same distribution

6



The posterior probability function is defined by

p(θ|x) =
p(x|θ)p(θ)

p(x)
(6)

But, as p(x) will act as a normmalizing constant, we can exclude this and rewrite
the posterior probability distribution as

p(θ|x) = p(x|θ)p(θ)

= multi[x; θ] Dir(θ|x)

≈

K
∏

k=1

θxk

k

K
∏

k=1

θαk−1
k

≈
K
∏

k=1

θ
(xk+αk−1)
k

= Dir(x+ α)

This section followed the report from Huang [2005].

2.3 Dirichlet plots - a demonstration

A short demonstration of the dirichlet distribution with their plots are discussed
here. It is difficult to visualize plots that are greater than 2 or 3 dimensional.
Therefore, two dimensional and three dimensional plots are provided to depict
the behaviour of dirichlet distribution.

Figure 1 provides 15 random draws at each of four different α settings and
the α’s are considered symmentric for these plots. The graph has the topics
plotted on x-axis and the probability of the topics on the y-axis. Here, we can
observe the following (1) as the alpha goes below 0, the graph gets uneven and
sparse (2) for each draw, the same distribution is maintained but the proportion
of topics are not always same for each draw. We will utilize this property while
modelling LDA.

Figure 2 provides three-dimensional plots of dirichlet distribution with α’s
at different settings. These plots can be reproduced by changing the values of
the variables a1, a2 and a3 (corresponding to alphas) provided in the code at
Appendix 5.2. The plots provided in these figures will help in understanding
LDA better, is discussed in section 3
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Figure 1: 2D plots of Dirichlet distribution, (from top left) in the clockwise
direction, α at different settings: 1. α = 1, 2. α = 0.1, 3. α = 0.01, 4. α = 5.
The figure provides 15 random draws at each of four different α settings. The
graph has the number of topics plotted on x-axis and the probability of the
topic on the y-axis. This graph can be reproduced by executing the R script
provided in 5.1
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Figure 2: 3D plots of Dirichlet distribution. Each of these plots are produced
at dimension k = 3 and the respective alpha settings are titled for each plot. It
can observed that when α = 1 (symmentric), the distribution is uniform, while
α = 10 (symmentric), the distribution has a mode at the maximum and the
hump is dense. But when we have α’s set asymmentric, the distributions are
skewed. It should also be noted that when α < 1 (symmentric), the mode is at
the minimum.
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3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative model to discover topics from the
text. LDA considers each document from a document collection to be a mix-
ture of multiple topics, where a topic can be defined to be a distribution over
a fixed vocabulary terms. Each document from the document collection is con-
sidered to be a different proportion of the topics. Say for example we analyze
a science document collection, which has documents from a variety of fields.
One document might exhibit topics from medicine and technology, another doc-
ument may have topics of medicine and bio science and a different document
with topics from bio science and technology. The major challenge is that these
topics are not known in advance, but should be learned automatically from the
documents. The current section will follow Blei et al. [2003].

The LDA model is provided in the plate diagram in figure 3. The notations
used in the model are introduced here:
α: a vector of symmentric dirichlet priors of size k, where k is the number of
topics which is fixed
β: the conditional probability table of the words to topics
θd: the multinomial variable (a vector of topic probabilities) is selected once for
each document
wd: vector of words in the document, which is the only observed variable in the
model
zd: the topic choice for each word (vector) in the document

The plate diagram can be interpreted in conjunction with the generative process
assumed by LDA for each document w in document collection D.

(1) choose θ ∼ Dir(α)
(2) For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ)
(b) Choose a word wn from p(wn|zn,β), a multinomial prob-

ability conditioned on the topic zn

Given the parameters α and β, the joint probability of θd, zd and wd, is given
by:

p(θd, zd,wd;α,β) = p(θd;α)

N
∏

n=1

p(zdn; θ
d)p(wd

n|z
d
n;β) (7)

The probability of words in a document is obtained by marginalizing out z and
θ, so

p(wd;α,β) =

∫

θd

p(θd;α)

N
∏

n=1

∑

zd
n

p(zdn; θ
d)p(wd

n|z
d
n;β)dθ

d (8)

To get the probability of all the documents in the corpus, we take a product of
the marginal distributions, is given by
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α β

θ z w

N
D

Figure 3: LDA - Graphical model

p(D;α,β) =

D
∏

d=1

∫

θd

p(θd;α)

N
∏

n=1

∑

zd
n

p(zdn; θ
d)p(wd

n|z
d
n;β)dθ

d (9)

3.1 Inference

Now, for a particular document we want to compute the posterior of the hidden
variables θd and zd given its words wd and the parameters α,β, which is given
by

p(θd, zd|wd;α,β) =
p(θd, zd,wd;α,β)

p(wd;α,β)
(10)

See (7) for the values for the numerator and (8) for the values corresponding
to the denominator of the posterior distribution (10). The computation of the
denominator of the posterior is intractable: because, both the variables θd and
zd coupled together are latent in nature. So it is not possible to compute the
expectation of the posterior distribution, which leads to variational inference,
where the edges between θ, z and w are removed and a simpler distribution
without many dependancies, are shown in figure 4. The approximate posterior
distribution based on the plate diagram provided in figure 4 is given by:

qd(θd, zd;γd,φd) = q(θd;γd)

N
∏

n=1

q(zd
n;φ

d
n) (11)

We are going to use the variational distribution: q(.) as an approximate pos-
terior function for the real posterior see - (10). As the posterior distribution is
intractable, we will use a variational inference algorithm (discussed in section
3.2).The EM algorithm using the variational inference is:
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Figure 4: Variational Inference - Graphical model

E-step: For each document, get the best approximate posterior q(θd, zd;γd,φd)
using the Variational inference algorithm.

M-step: We maximize the bounds of q(.) function with respect to α and β.

3.2 Variational inference

The variational inference algorithm uses the variational distribution, see (11)
attempting to find the tighest lower bound on the data. Here, we will derive
the lower bound for the variational EM procedure. The further part of this
section will closely follow Kampa [2010] and Zhao [2013]. Here, we attempt to
find parameters α and β that maximize the log likelihood of the data wd; we
start by defining the probability of the data given its parameters:

p(wd;α,β) =
p(θd, zd,wd;α,β)

p(θd, zd|wd;α,β)

Ignoring the denominator as its just a normalizing constant, we get

p(wd;α,β) = p(θd, zd,wd;α,β)

To get the log likelihood of the document, we first get the marginal

distribution and then take log

log p(wd;α,β) = log

∫

θd

∑

zd

p(θd, zd,wd;α,β)dθd

12



We know that, E [X ] =

∫

xf(x)dx

= log

∫

θd

∑

zd

p(θd, zd,wd;α,β)
q(θd, zd;γd,φd)

q(θd, zd;γd,φd)
dθd

= log E
q(θd,zd;γd,φd)

[

p(θd, zd,wd;α,β)

q(θd, zd;γd,φd)

]

applying Jenson’s inequality where f(E [X ]) ≥ E [f(X)] if f(E [X ])

is a convex function

≥ E
q(θd,zd;γd,φd)

[

log

(

p(θd, zd,wd;α,β)

q(θd, zd;γd,φd)

)]

≥

∫

θd

∑

zd

q(θd, zd;γd,φd) log p(θd, zd,wd;α,β)dθd−

∫

θd

∑

zd

q(θd, zd;γd,φd) log q(θd, zd;γd,φd) dθd

= E
[

log p(θd, zd,wd;α,β)
]

− E
[

log q(θd, zd;γ,φ)
]

We could factorize this further

=

∫

θd

∑

zd

q(θd, zd;γ,φ) log p(θd;α) dθd+

∫

θd

∑

zd

q(θd, zd;γ,φ) log p(zd|θd) dθd+

∫

θd

∑

zd

q(θd, zd;γ,φ) log p(wd|zd;β) dθd+

∫

θd

∑

zd

q(θd, zd;γ,φ) log q(θd;γ) dθd+

∫

θd

∑

zd

q(θd, zd;γ,φ) log q(zd;φ) dθd

13



The lower bound is defined by

L(γ,φ;α,β) = E
q(θd,zd;γ,φ)

[

log p(θd;α)
]

+ E
q(θd,zd;γ,φ)

[

log p(zd|θd)
]

+ E
q(θd,zd;γ,φ)

[

log p(wd|zd;β)
]

− E
q(θd,zd;γ,φ)

[

log q(θd;γ)
]

− E
q(θd,zd;γ,φ)

[

log q(zd;φ)
]

(12)

The expectation for each component from the lower bounds equation (12) is
derived below.

3.2.1 Expectations for lower bound

Solving for Eq(θd,zd;γ,φ)

[

log p(θd;α)
]

p(θd;α) =
Γ(
∑K

k=1 αi)
∏K

k=1 Γ(αk)

K
∏

k=1

θαk−1
k

Now, taking log over p(θd;α), we get

log p(θd;α) =
∑

k

(αk − 1) log θk + log Γ(
∑

k

αk)−
K
∑

k

log Γ(αk)

Now, we take expectation with respect to the q-function

E
q

[

log p(θd;α)
]

=
∑

k

(αk − 1)E
q
[log θk] + log Γ(

∑

k

αk)−

K
∑

k

log Γ(αk)

(13)

E
q(θd,zd;γ,φ)

[log θk] = −Ψ

(

∑

k

γk

)

+Ψ(γk) (14)

To know how we got the Eq(θd,zd;γ,φ) [log θk], please visit Appendix:5.4. Now,

applying (14) in (13), we get,

E
q(θd,zd;γ,φ)

[

log p(θd;α)
]

=
∑

k

(αk − 1)

[

−Ψ

(

∑

k

γk

)

+Ψ(γk)

]

+ log Γ

(

∑

k

αk

)

−
∑

k

log Γ(αk)

Now, solving for Eq(θd,zd;γ,φ)

[

log p(wd|zd;β)
]

, we formulate
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wd
nj : equals 1 in doc d, if vocab item j is at position n

zdnk: equals 1 in doc d, if topic k is at position n

so, p(wd
n|z

d
n,β) =

K
∏

k=1

V
∏

j=1

p(wj
nd

= 1|zknd
= 1)w

j
nd

,zk
nd

For simplicity reasons, we represent

p(wd|zd,β) =

N
∏

n=1

K
∏

k=1

V
∏

j=1

p(wj
n = 1|zjn = 1)w

j
n,z

k
n

=

N
∏

n=1







K
∏

k=1

V
∏

j=1

β
wj

nz
k
n

kj







Taking log and expectation, we get

E
q(θd,zd;γ,φ)

[

log p(wd|zd;β)
]

=
N
∑

n=1







K
∑

k=1

V
∑

j=1

E
q

[

log β
wj

nz
k
n

kj

]







=

N
∑

n=1







K
∑

k=1

V
∑

j=1

wj
n E

q

[

zkn
]

log βkj







Now, we will compute the expectation of zkn with respect to the q function

E
q(z|φ)

[

zkn
]

=
∑

zn

zknq(zn|φ)

=
∑

zn

zkn

K
∏

j=1

(φjn)
zj
n = φkn

E
q(θd,zd;γ,φ)

[

log p(wd|zd;β)
]

=
N
∑

n=1

K
∑

k=1

V
∑

j=1

wj
nφ

k
n log βkj
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Now, solving for Eq(θd,zd;γ,φ)

[

log p(zd|θ)
]

p(zd; θ) =

N
∏

n=1

p(zdn; θ)

=

N
∏

n=1

K
∏

k=1

θ
zk
nd

i

Taking log, we get

log p(zd; θ) =

N
∑

n=1

K
∑

k=1

zknd log θk

Now, taking expectation over q-function

E
q(θd,zd;γ,φ)

[

log p(zd; θ)
]

=

N
∑

n=1

K
∑

k=1

E
q

[

zknd log θk
]

We factorize this further to get,

=
N
∑

n=1

K
∑

k=1

E
q(z;φ)

[

zkdn
]

E
q(θ;γ)

[log θk]

E
q(z;φ)

[

zkn
]

=
∑

zn

zkn q(zn;φ)

=
∑

zn

zkn

K
∏

j=1

(φjn)
zj
n = φkn

E
q(θ;γ)

[log θk] =



−Ψ





K
∑

j=1

γj



+Ψ(γk)





Now, the factorized expectations are derived and substituted back to get

E
q(θd,zd;γ,φ)

[

log p(zd|θ)
]

=

N
∑

n=1

K
∑

k=1

(φkn)



−Ψ





K
∑

j=1

γj



+Ψ(γk)




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Now, solving for Eq(θd,zd;γ,φ) [log q(θ; γ)]

This is similar to the proof of Eq(θd,zd;γ,φ)

[

log p(θd;α)
]

E
q(θd,zd;γ,φ)

[log q(θ; γ)] =

K
∑

k=1

(γk − 1)

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

+ log Γ

(

K
∑

k=1

γk

)

−

K
∑

k=1

log Γ(αk)

Now, solving for Eq(θd,zd;γ,φ)

[

log q(zd;φ)
]

q(zn;φ) =
K
∏

k=1

(φkn)
zk
n

log q(zn;φ) =
N
∑

n=1

K
∑

k=1

zkn log(φ
k
n)

E
q(θd,zd;γ,φ)

[

log q(zd;φ)
]

=
N
∑

n=1

K
∑

k=1

E
q(z;φ)

[

zkn
]

log(φkn)

=
N
∑

n=1

K
∑

k=1

φkn log(φ
k
n)

Applying all the derived expectations in (12), we get the overall lower bounds.

L(γ, φ;α, β) =
∑

k

(αk − 1)

[

−Psi

(

∑

k

γk

)

+ ψ(γk)

]

+ log Γ

(

∑

k

αk

)

−
∑

k

log Γ(αk)

+
N
∑

n=1

K
∑

k=1

V
∑

j=1

wj
nφ

j
n log βkj +

N
∑

n=1

K
∑

k=1

(φkn)

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

−

K
∑

k=1

(γk − 1)

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

+ log Γ

(

K
∑

k=1

γk

)

−

K
∑

k=1

log Γ(αk)−

N
∑

n=1

K
∑

k=1

φkn log(φ
k
n)
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Further, the derivations of the update equations for the variational Expectation
Maximization are worked out at Appendix 5.3. Following is the algorithm used
for the LDA variational expectation maximization.

Algorithm: Iterative Variational EM

E-step: For each document, the following iterative al-
gorithm is used to identify the values for the variational
parameters

initialize φ
k(0)
n with equal probability values for all k and

n at 0th iteration

initialize γ
(0)
k ← αk + Nd

K
for all k and n at 0th itera-

tion

do until convergence
for n = 1 to Nd do

for k = 1 to K do
φ
k,(t+1)
n ← βkj + exp

{

Ψ(γk)−Ψ
(

∑K
k=1 γk

)}

end
Normalize φ

k,(t+1)
n sum to 1

end
γ
(t+1)
k ← αk +

∑N

n=1 φ
k,(t+1)
n

end

M-step: Maximize the lower bounds with respect the
model parameters α and β

Until now we discussed LDA by variational approximation which is just an ap-
proximation of the posterior. Therefore we will discuss an alternative approach
to variation EM, called as LDA by collapsed Gibbs sampling, but before we try
to understand LDA by collapsed gibbs sampling, it is a good idea to understand
about Gibbs sampling in general. In the next section 3.3 we will discuss about
the Gibbs sampling technique in general and in section 3.4 we will discuss about
LDA by collapsed gibbs sampling.
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3.3 Gibbs sampling

Definition: Gibbs sampling is a Markov chain Monte Carlo (MCMC) algo-
rithm for obtaining a sequence of observations which are approximated from
a specified multivariate probability distribution (i.e. from the joint probability
distribution of two or more random variables), when direct sampling is difficult3.

This section will closely follow Resnik and Hardisty [2010] and Bishop [2006].
The idea behind using this algorithm is to get the desired posterior distribution
after iterating through a number of sampling steps from the conditional distri-
bution.

Consider a probability distribution p(Z) = p(z1, z2, . . . , zn), from which we
want to sample. Gibbs sampling is used to generate a sequence of samples from
such a probability distribution. The gibbs sampling procedure can work with
some initial state. So we initialize state values for the variables z1, z2, . . . , zn.
Each step of the gibbs sampling would involve replacing the value of one of the
variable zi with a value sampled from a distribution of the variable conditioned
on the remaining variables ie., p(zi|z−i). We get one gibbs sample once we
sample for all the variables in the distribution. This procedure is defined in the
following pseudo code.

Gibbs sampling

1. Initialize {zi : i = 1, . . . ,M}
2. for τ = 1, . . . , T :

− Sample zτ+1
1 ∼ p(z1|z

(τ)
2 , z

(τ)
3 , . . . , z

(τ)
M

− Sample zτ+1
2 ∼ p(z2|z

(τ+1)
1 , z

(τ)
3 , . . . , z

(τ)
M

...
− Sample zτ+1

M ∼ p(zM |z
(τ+1)
1 , z

(τ+1)
2 , . . . , z

(τ+1)
M−1

This procedure is repeated a number of times until the samples begin to converge
to what would be sampled from the true distribution. Although the number of
sampling steps required to get a desired (stationary) distribution is not known,
but its theoretically proved that Gibbs sampling method will reach the desired
distribution after many number of sampling steps.

The next section 3.4 will closely follow William [2011], Griffiths and Steyvers
[2004] and Carpenter [2010].

3.4 Collapsed gibbs sampling for LDA

LDA by Collapsed gibbs sampling is applied to a slight extension of the LDA
model given earlier, is represented as a plate diagram in figure 5. As described

3The definition taken from http://en.wikipedia.org/wiki/Gibbs_sampling
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earlier in section 3, we view the documents as mixtures of topics, where each
document has a different mixture from the document collection. From the plate
diagram (figure 5), it can be observed that, the only change from the plate dia-
gram presented in figure 3 is the addition of dirichlet prior η over the parameter
β.

Lets start by understanding the notations being used here:

w - A vector of words per document
z - A vector of topics corresponding to each word in the document
Z - topics across all documents
W - words across all documents
θ - A vector of topic proportions for the document
α - A vector of (symmentric) dirichlet parameters over θ
β - the conditional probability table of the words to topics (A vector of vectors)
η - A vector of (symmentric) dirichlet parameters over β

For LDA, we are interested only in the latent document-topic proportions θd,
topic-word distributions β(z) and topic-index assignments for each word zi. LDA
gibbs sampling algorithm can be used to get each of the said latent variables
and it has been noted in William [2011], θd and β(z) can be computed with just
the topic-index assignments zi. Therefore, a simpler algorithm called collapsed
Gibbs sampler could be derived by integrating out the multi-nomial parameters
and just sample zi.

α β

θ z w

η

N
D

K

Figure 5: LDA - Gibbs sampling

Let i be some position in a document. Also, let Zi stand for the topic at that
position (which can also be written as zdn) and Z−i stand for topic choices at
all positions except Zi

So, the idea of gibbs sampler is to compute the probability of topic zi being as-
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signed to wi, given all other topic assignmentsZ−i, is given by p(Zi|Z−i,W ;α, η).

p(Zi|Z−i,W ;α, η) =
p(Z,W ;α, η)

p(Z−i,W ;α, η)
(15)

Now, considering the denominator, from (15)

p(Z−i,W ;α, η) = p(Z−i,W−i;α, η)×
∑

k

p(Z−i = k,W−i) (16)

Ignoring second multiplicant of (16), p(Zi|Z−i,W ;α, η) is a ratio of two joint
probabilities, which is

p(Zi|Z−i,W ;α, η) ∝
p(Z,W ;α, η)

p(Z−i,W−i;α, η)
(17)

Before proceeding to derive the update equations for gibbs sampler, lets intro-
duce a few more notations for counts.

Ωd,k - counts of topic k in document d
Ψk,v - counts of word v in document d

Let Ω and Ψ be the counts assuming at i, topic t is chosen and ( )−i are the
counts of [( )− 1] (ie., the count of ith position is excluded). If i is in document
d and v is the word at position i, then

Ω−i
d,t = Ωd,t − 1 , else same

Ψ−i
k,v = Ψk,v − 1 , else same

Given the model, the joint probability of all the parameters are provided by

p(W 1:D,Z1:D, θ1:D,β1:K ;α,η) = p(θ;α)× p(Z|θ)× p(β;η)× p(W |Z,β)

=

D
∏

d=1

p(θd;α)

K
∏

k=1

p(βk;η)

D
∏

d=1

N
∏

n=1

p(zdn|θ
d)

D
∏

d=1

N
∏

n=1

p(wd
n|z

d
n,β)

By definition, p(W ,Z;α,η) =

∫

θ

∫

β

p(W 1:D,Z1:D, θ1:D,β1:K ;α,η)dθdβ

=

∫

θ

∫

β

D
∏

d=1

Dir(θd;α)

K
∏

k=1

Dir(βk;η)

D
∏

d=1

K
∏

k=1

(θd
k)

Ωd
k

K
∏

k=1

N
∏

n=1

(βk,n)
Ψk,n)dθdβ
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After re-arrangement ...

p(W ,Z;α,η) =

∫

β
1:K

∏

k

Dir(βk;η)
∏

k

(βk,n)
Ψk,ndβ

∫

θ1:D

∏

d

Dir(θd;α)
∏

d

(θd
k)

Ωd
kdθ

=

∫

β1:K

∏

k

1

B(η)

∏

k

β
Ψk,n+ηk−1
k,n dβ

∫

θ1:D

∏

d

1

B(α)

∏

d

θ
Ωk,d+αk−1
k,d dθ

Multiply and divide by B(Ψk + η) and B(Ωd + α)

=
∏

k

B(Ψk + η)

B(η)

∫

β
1:K

[

1

B(Ψk + η)

∏

k

β
Ψk,n+ηk−1
k,n

]

dβ

∏

d

B(Ωd +α)

B(α)

∫

θ1:D

[

1

B(Ωd +α)

∏

d

θ
Ωk,d+αk−1
d,k

]

dθ

The integrals from the above equation are the PDF’s of dirichlet. Therefore

they sum to 1.

=
∏

k

B(Ψk + η)

B(η)

∏

d

B(Ωd + α)

B(α)

The numerator of (17) is

p(Z,W ;α,η) =
∏

k

B(Ψk + η)

B(η)

∏

d

B(Ωd +α)

B(α)

By analogy, the denominator of (17) can be written as

p(Z−i,W−i;α,η) =
∏

k

B(Ψ−i
k + η)

B(η)

∏

d

B(Ω−i
d +α)

B(α)

∴ p(Zi|Z−i,W ) =
∏

k

B(Ψk + η)

B(Ψ−i
k + η)

×
∏

d

B(Ωd +α)

B(Ω−i
d +α)

(18)

Lets remember the Beta function and the gamma rule which we will be using
for further deriving (simplying the above equation) the update equation.

B(α) =

∏

k Γ(αk)

Γ(
∑

k αk)

∣

∣

∣

∣

Γ(αk + 1) = αkΓ(αk)
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Now, lets work out the first and second multiplicants of (18) seperately

First multiplicant:

∏

k

B(Ψk + η)

B(Ψ−i
k + η)

⇒
B(η +Ψt)

B(η +Ψ−i
t )

We got the above step because in LHS, the t̄ terms have B(η+Ψt̄)
B(η+Ψt̄)

. Now, recall

v is a word at position i. Define 1v as (0, ..., 1, ..., 0), with 1 at position v, then
Ψt = Ψ−i

t + 1v

⇒
B(η +Ψ−i

t + 1v)

B(η +Ψ−i
t )

Now, consider x = η +Ψ−i
t

⇒
B(x+ 1v)

B(x)
=

∏

v̄ Γ(xv̄)Γ(xv + 1)/Γ(
∑

v xv + 1)
∏

v̄ Γ(xv̄)Γ(xv)/Γ(
∑

v xv)

After cancellation and applying gamma rule, we get

⇒
Γ(
∑

v xv)(xv)(Γ(xv))

Γ(xv)(
∑

v xv)(Γ(
∑

v xv))
=

xv
∑

v xv

⇒
Ψ−i

tv + ηt
∑

v′(ηt + Ψ−i
tv′)

First Multiplicant ⇒
Ψ−i

tv + ηt

(
∑

v′ Ψ
−i
tv′) + V η

(when symmentric)

Second multiplicant:

If di is doc at position i, for all d′ 6= di Ω−i
d′ = Ωd′ , so in

∏

d
B(Ωd+α)

B(Ω−i

d
+α)

the d̄i terms has
B(Ωd̄1

+α)

B(Ωd̄i
+α) .

∏

d

B(Ωd +α)

B(Ω−i
d +α)

⇒
B(Ωdi

+α)

B(Ω−i
di

+α)

Lets define 1t = (0, ..., 1, ..., 0) with 1 at position t, then Ωdi
= Ω−i

di
+ 1t.

⇒
B(α+Ω−i

di
+ 1t)

B(α+Ω−i
di
)
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Now, let y = Ω−i
di

+α.

∏

d

B(Ωd +α)

B(Ω−i
d +α)

⇒
B(y + 1t)

B(y)

By analogy from the first multiplicant,

⇒
yt

∑

k′ yk′

=
Ω−i

dit
+ αt

∑

k′(αd +Ω−i
dik′)

Second multiplicant ⇒
Ω−i

dit
+ α

(
∑

k′ Ω
−i
dik′) + (Kα)

(when symmentric)

Substituting the first multiplicant and second multiplicant in (18), we get

p(Zi|Z−i,W ) =
Ψ−i

tv + ηt

(
∑

v′ Ψ
−i
tv′) + V η

×
Ω−i

dit
+ α

(
∑

k′ Ω
−i
dik′) + (Kα)

(19)

The above equation will be the gibbs sampling update for the LDA. The topic
probabilities for each iteration is stored and can be used for statistical analysis
later. Following is the gibbs sampling algorithm for LDA.

Algorithm: LDA by Gibbs sampling

begin
randomly initialize Z and increment counters (for each iteration)
for each-iteration do

for each-document, n = 1 . . .N do
word ←W [n]
topic ← Z[n]
Ωd,k− = 1,Ψk, v− = 1
for each-topic do

p(Zi|Z−i,W ) =
Ψ−i

tv +ηt

(
∑

v′ Ψ
−i

tv′
)+V η

×
Ω−i

dit
+α

(
∑

k′ Ω
−i

dik
′
)+(Kα)

end
sample topic Z[n] from p(Zi|Z−i,W )
Ωd,k+ = 1,Ψk, v+ = 1

end
store Zi value

end
return the stored Z values for analysis

end
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This gets us to the end of the discussion on LDA by collapsed gibbs sampling.
But this gibbs sampler ends up producing a number of samples (equal to the
number of iterations), which can be used later for further statistical analysis.
When the number of iterations is large, then the algorithm ends up producing
label switching, which is a common problem that occurs with gibbs sampling.
In the next section 3.4.1 we discuss the Label switching problem.

3.4.1 Label switching

Label switching is a problem identified in MCMC (Monte Carlo Markov Chain)
sampling techniques on mixture models that does not always. Gibbs sampling,
being a MCMC sampling technique, we will just try to understand the problem
here.

To explain this problem, lets consider a dataset with word play having two
different senses. Sense 1 may represent a sentence or document with the word
play being used in the context of a game, while Sense 2 may represent a sentence
or document with the word play being used in the context of music. The model
may not distinguish all the game related documents as Sense 1 and all the music
related documents as Sense 2. For different samples, the model might label
music related documents as Sense 1 and game related documents as Sense 2.
This is called the problem of label switching. Therefore, it would be dangerous
to consider the mean or mode of the labels from multiple samples.

According to Stephens [2000], label switching problem arises when taking a
Bayesian approach to parameter estimation and clustering using mixture mod-
els. In LDA, when we assign priors to the latent variables θ and β, and they
are sampled from symmetric hyper-parameters, which will make the prior dis-
tributions of each sample to be symmetric. Therefore our posteriors will also be
symmetric, which leads to label switching. Say for example, we have documents
with topics related to dogs and medicine. In one sample, the dogs model will
assign Topic1 to words related to dogs while assigning Topic2 to words related
to medicine and in a different sample, the words related to medicine will take
Topic1 and dogs will take Topic2. A different illustrative example is provided
in Stephens [2000] to explain the same problem.

Here, we will not discuss the various solutions that have been proposed.

4 Conclusion

LDA is a statistical model to discover topics from a huge collection of text.
LDA by variational approximation and collapsed gibbs sampling were discussed
in detail in this report. Although LDA by variational approximation was the
very first proposed method to discover topics from text, the gibbs sampling
approach is more promising as the former approach is just an approximation
of the later one. The collapsed gibbs sampling approach will be very useful in
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getting the actual posterior rather than the approximate posterior. Also, in
the Gibbs sampling approach, as we get a number of samples of the posterior,
we have the freedom to pursue further statistical analysis with the samples.
These LDA methods need not necessarily be used as a standalone application,
bu the topic distributions inferred can be used for further tasks such as sense
disambiguation, information retrieval and question answering.

The learning experience has been enriching and I have planned to use the
knowledge earned by learning this technique in my PhD for Diachronic analysis
of word-sense4. Additionally, I have performed experiments with different LDA
toolkits used in the state-of-the-art and seperate report on the results obtained
is submitted with this report.

4Diachronic analysis of word sense is to understand the semantic change of a word over

time and space http://en.wikipedia.org/wiki/Semantic_change
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5 Appendix

5.1 Generate 2D plots

require (MCMCpack)
l ibrary ( ggp lo t2 )
alpha <− 1
draws <− 15
dimen <− 10
x <− r d i r i c h l e t ( draws , rep ( alpha , dimen ) )
dat <− data . frame ( item=factor ( rep ( 1 : 1 0 , 1 5 ) ) ,

draw=factor ( rep ( 1 : 1 5 , each=10)) ,
va lue=as . vector ( t ( x ) ) )

l ibrary ( ggp lo t2 )
gp lo t <− ggplo t ( dat , aes ( x=item , y=value , ymin=0,ymax=va lue ) ) +

geom po int ( co l our=I ( ” blue ” ) ) +
geom l i n e r ang e ( co l our=I ( ” blue ” ) ) +
f a c e t wrap (˜draw , ncol=5) +
scale y cont inuous ( l im=c ( 0 , 1 ) )

postscript ( f i l e = paste ( ‘ t e s t ’ , ‘ . eps ’ , sep=”” ) , width = 5 ,
he ight = 5)

print ( gp lo t )
dev . of f ( )
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5.2 Generate 3D plots

a1 <− 0 .1
a2 <− 0 .1
a3 <− 0 .1
x1 <− x2 <− seq ( 0 . 0 1 , . 9 9 , by=.01)

f <− function ( x1 , x2 ){
term1 <− gamma( a1+a2+a3 )/(gamma( a1 )∗

gamma( a2 )∗gamma( a3 ) )
term2 <− x1 ˆ(a1−1)∗x2 ˆ(a2−1)∗(1−x1−x2 )ˆ ( a3−1)
term3 <− ( x1 + x2 < 1)
term1∗term2∗term3
}

z <− outer ( x1 , x2 , f )
z [ z<=0] <− NA
persp ( x1 , x2 , z ,

main = ”Alpha = [ 0 . 1 , 0 . 1 , 0 . 1 ] ” ,
col = ” l i g h t b l u e ” ,
theta = 50 ,
phi = 20 ,
r = 50 ,
d = 0 . 1 ,
expand = 0 . 5 ,
l t h e t a = 90 ,
l ph i = 180 ,
shade = 0 .75 ,
t i ck type = ” d e t a i l e d ” ,
n t i c k s = 5 ,
z l im = i f ( length (na . omit

(unique (as . vector ( z ))))<=1) {
c ( 0 , 2 . 1 )

} else {
range ( z , na .rm = TRUE)

})
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5.3 Variational parameters for Update

We should now, learn the parameter update equations for the variation expec-
tation. The variational parameters can be learnt by taking derivatives with
respect to φ and γ.

L(φ;β) = φkn log βkj + φkn

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

− φkn log φ
k
n

Applying Lagrangian, we get

= φkn log βkj + φkn

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

− φkn log φ
k
n + λn

(

∑

k

φkn − 1

)

Differenting with respect to φkn

∂L

∂φkn
= log βkj −Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)− log φ
k
n + λn − 1 = 0

log φkn = log βkj +Ψ(γk)−Ψ

(

K
∑

k=1

γk

)

+ λn − 1

φkn = βkj + exp

{

Ψ(γk)−Ψ

(

K
∑

k=1

γk

)}

+ exp {λn − 1}

As, exp {λn − 1} is just a constant, we can ignore this

φkn ∝ βkj + exp

{

Ψ(γk)−Ψ

(

K
∑

k=1

γk

)}

Now, we derive the update equation for gamma.
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L(γ;α) =

K
∑

k=1

(αk − 1)

[

−Ψ

(

∑

k

γk

)

+Ψ(γk)

]

+
∑

n

∑

k

Φk
n

[

−Ψ

(

K
∑

k=1

γk

)

+Ψ(γk)

]

−
K
∑

k=1

(γk − 1)

[

−Ψ

(

∑

k

γk

)

+Ψ(γk)

]

+ log Γ

(

∑

k

γk

)

− log Γ(γk)

=
∑

k

[

Ψ(γk)−Ψ

(

∑

k

γk

)][

αk − 1 +
N
∑

n=1

φkn − γk + 1

]

+ log Γ

(

∑

k

γk

)

− log Γ(γk) (re − arrangement)

=

K
∑

k=1

(

αk +

N
∑

n=1

φkn − γk

)

Ψ(γk)−Ψ

(

K
∑

k=1

γk

)

K
∑

k=1

(

αk +

N
∑

n=1

φkn − γk

)

+ log Γ

(

∑

k

γk

)

− log Γ(γk) (re − arrangement)

Differentiate with respect to γk

∂L

∂γk
=

K
∑

k=1

(

αk +

N
∑

n=1

φkn − γk

)

Ψ(γk)−Ψ

(

K
∑

k=1

γk

)

K
∑

k=1

(

αk +

N
∑

n=1

φkn − γk

)

+Ψ

(

∑

k

γk

)

−Ψ(γk) = 0

With a further bit of re-arrangement and cancellation, we get

γk = αk +
N
∑

n=1

φk

For the maximization step, we get the parameter updates for α and β to maxi-
mize the lower bound with respect to the model parameters α and β.
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For β

L(γ, φ;α, β) = Lβkj
=

D
∑

d=1

Nd
∑

n=1

wj
nφ

k
n log βkj

L(α, β, λ) = Lβkj
+ λk





V
∑

j=1

βkj − 1





Taking derivative with respect to βkj

∂L

∂βkj
=

1

βkj

D
∑

d=1

Nd
∑

n=1

wj
nφ

k
n = 0

βkj =

D
∑

d=1

Nd
∑

n=1

wj
nφ

k
n

I have not provided the derivation for the update for α as I have not completely
understood this yet.
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5.4 Expectation of dirichlet in exponential family

We will now exploit a distribution in exponential family

p(x; η) = h(x) exp{ηTT (x)−A(η)}

Dirichlet, in its exponential family has the form

p(θd;α) = exp

{

∑

k

(αk − 1) log θk + log Γ(
∑

k

αk)−
K
∑

k

log Γ(αk)

}

The exponential parameters are,

(1) T (θk) = log θk

(2) h(θ) = 1

(3) ηk = αk

(4) A(η) = −log Γ(
∑

k

αk) +
∑

k

log γ(αk)

Further, E
p(θ;α)

[T (θk)] =
∂A(η)

∂ηk

∴ E
p(θ;α)

[T (θk)] =
∂

∂(αk − 1)

[

−log Γ

(

∑

k

αk

)

+
∑

k

log Γ(αk)

]

= −
1

Γ(
∑

k αk)

∂Γ(
∑

k αk)

∂(
∑

k αk)
+

1

Γ(
∑

k αk)

∂γ(αk)

∂αk

= −Ψ

(

∑

k

αk

)

+Ψ(αk)
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